Handling
Cyclic Reinforcement of Lattice Values in
Incremental
Dependency-driven Static Analysis

Jens Van der Plas, Quentin Stiévenart, Coen De Roover

coen.de.roover@vub.be

SCAM 2025
8-9 September 2025
Auckland, NZ

SOFTWARE Cyber A
LANGUAGES W Security U QA M
LAB

Flanders

Credit where credit is due

Quentin

Jens

"

5

.'

qﬁréz

¥

::kk L7

Static program analysis

const onClickHandler = () => { Where is this class instantiated?
const $ = document.querySelector;
let pass = $("#pass").value; Which code will never be executed?

console.log(pass);

1 source of * (Can this acces raise a NullPointerException?
sink to be avoided sensitive
Information » Can this integer arithmetic overflow?

May sensitive information leak outside?

answer questions about any execution of the program, without executing it

Pain Points Using Program Analyzers

Wrong checks are on by default
Bad warning messages

Too many false positives

Too slow

No suggested fixes

Difficult to fit into workflow

Bad visualization of warnings

No suppression of warnings

No ranking of warnings

Can't selectively turn off analysis
Complex user interface

Can't handle all language features
No support for custom rules
Misses too many issues

Not cross platform

What (375 Microsoft) developers need

Where Should Analysis Be Shown?

In my editor

In the build output

In the code review

In a browser

I I I I I I
0 50 100 150 200 250

Christakis et al. [ASE2016]

20

40

60

80

Incrementalisation to the rescue

Initial

Initial analysis

program

Program
update

éa v)
Updated

Full (from-scratch) reanalysis

Initial
result

program

> Updated

result

Our approach to incrementalisation

 perform change impact analysis
from AST changes to analysis results to know what can be kept

 until a new fixed point has been found
ld\ remove and refine outdated results

 add new results
by rescheduling dependents of changed result:

requires reifying computational dependencies

Reified computational dependencies

Start of the analysis

Worklist
Main

Global store
=

(define x 0)
(define (fun)

(inc) x)

(define (inc) (set! x (+ x 1)) #t)

(fun)

Component

@ Global store address —e> Effect

14

{Str, Bool, Int} = T

N\
/

{Str,Bool} {Str,Int} {Bool, Int}

/

{Str} {Bool}

A
/
./

Int}

./

N

Reified computational dependencies

(define x 0)

(define (fun) (inc) x)

(define (inc) (set! x (+ x 1)) #t)
(fun)

Analysed main
Global store

Worklist o
fun write(bot) — — write(Int)

/

read(bot) call

Global store Y

X — Int
R

Component @ Global store address —e> Effect

8

Reified computational dependencies

Analysed fun

Worklist
INC
Main

Global store
X — Int
return(fun) — Int

=S

(define x 0)

(define (fun) (inc) x)

(define (inc) (set! x (+ x 1)) #t)
(fun)

@Qwrite(lnt)— —call >
\read(bot)

Component @ Global store address —e> Effect

9

Reified computational dependencies

(define x 0)

(define (fun) (inc) x)

(define (inc) (set! x (+ x 1)) #t)
(fun)

Analysed Inc

Global store

X — Int
return(fun) — Int

Worklist
Main
fun

return(inc) — Bool

..

Component @ Global store address —e> Effect

10

Reified computational dependencies

(define x 0)

(define (fun) (inc) x)

(define (inc) (set! x (+ x 1)) #t)
(fun)

End of analysis

Worklist
%

X — Int
return(fun) — Int

Global store

return(inc) — Bool

return(Maln) — Int Component @ Global store address —e> Effect

11

Approach to incrementalisation revisited

 perform change impact analysis
from changes to source code modules to components in previous analysis results

 until a new fixed point has been found .
dependency-driven invalidate

compare results for

recompute component to previous
impacted component version and remove outdated
as usual components, dependencies,

store writes can change
values

...................

Van der Plas et al. VMCAI 2023) Result Invalidation for Incremental Modular Analyses 77, I|| 75

NNNNN

J y :

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

a= =200 U000 40 (O 2=t
L S2EE 8T beEENC R X 008 E AT o 50T R

== ®© =0 == RN
898 & Lo £28E08AESERAC SBSRI AR §

©a = S0 o TEQOl b [} T

0 F TECo aQgeSR 5 g 888 §
—oE=g QLBL==Z v Y Gan O

LLLLLLLL
3=2% 2O0E

......
hhhhhh

] [939]
E%Eg cc

Problem: cyclically reinforced values

curr computed
through data flow

equations
cLetrec involving curr
((fun (lambda Cargd L /) \)

(letrec wmam)
((loop (lambda (curr) wmmwn r%ﬂ#) ; write(#0) mmﬁ@
(1f curr ¥ o vy - o
Sloopucurlrl) Main coeocall - fun cee-call -) 'Loop
stop”))))
(loop argl))))
(fun #t)) Component --e » Effect

() Cyclic information flow ----> Use of literal

13

Problem: prevents precise updates

iInvalidation of outdated contribution of Main:
only #f stored at arg

(letrec
((fun (lambda (arg)
(letrec e
((loop (lambda (curr) s . write() SRR .
(if curr % wriyfe(#t) read(:#t)

(loop curr) L LN £ L
"stop”)))) _

(_Loop ar‘g))))) N Maln oo call -+)} fun ceoocall - 'Loop

(fun (<change> #t #f)))

program change

re-analysis of impacted component

cylic reinforcement of values
the old value of curr from the previous program version influences the computation of the new one, leading to precision loss

14

Solution: track information flow between addresses

Address Sources
Address Sources O]
H H O A
[] O
value v1in blue address #1t 0 value in blue address
Vlu > Vlu stems from pink address A = stems from literal O
TAddress lookup iAddress write iAddress of y lAddress of x
vl V2 vl o | #t 0

.. : _ computations in
vl U v, = v3_ result of join carries (define y #t,) branches influenced by
labels of operands
(define x (if y 0_1%) labels of condition

1

Implicit Flow Context

O

explicit flow implicit flow and literals

lightweight: label values with source address on store reads, propagate the labels, and extract them upon store writes

15

Solution: identify cycles and “refine” values within

detect SCCs

Address Sources
[N
[A
N [

IRC

information
flow graph

oo

16

ﬁ

refinement condition

e external incoming value is

updated non-monotonically

« SCC is partially broken or a

value is no longer flowing to it

 a literal value is no longer used

drastic, but sound

set all
addresses to L,

and trigger re-
analysis

Evaluation

Implemented in MAF framework (Scala implementation, Scheme programs)

* 33 curated refactoring-like changes to benchmark programs 13
* 950 generated versions of benchmark programs 163

RQ1: Precision
Does the result of an incremental update with cycle invalidation
always match the result of a full reanalysis?

RQ2: Performance
How does an incremental update with cycle invalidation perform
compared to a full reanalysis of the updated program?

17

Evaluation: precision

Compare all values in the store to the store of a full reanalysis

‘v,,.Cv,,, — unsound
*v.,..=10,,,, — fully precise
v, C v, — Imprecise

rean Iinc

= No unsoundness
= Precise (on all but one program,
missed one cycle: edge case)

now all but one
bar at 100%

18

~ 100% -
n

g 80% A
6 (o]
D

b}

; 60%
o

b 40% A
>

n 20% A
J

0%

VMCAI23

Precision comparison

= | BE - -
i
/
;
e
- 7
I v
u /
- Z
[| - o /
/
/
................................ 4
G.)G)N"-’QQG)'O_XUM'OL_""CHNU’CU“G)G)G)EHNMUQ'O
+— O ST= C.2.=—oo CWn © -
CimE 8T oS E N h s U2 ERRE LS00 007 88
005 & LorPEsES3AERRRG0 ORoRALLR O
Scod o202
=30C >00€E
0UTO U
E;GI)Q (ON]
-o_c cC
2 o0
Q95 cc
25
et
:E
S

CI-DI-WI
Wi
NoOpt

Performance gain possible
depends on size of impact of the
program changes.

Evaluation: performance

1.2 " : : And some of the generated changes
> * are rather drastic

1.0 g 10! 0 s -
S i : (e.g., removal of function calls).

o
o

Time of an incremental update compared to a full reanalysis of the program

10°

o
N

Faster for about
50% of programs

o
N
Ime relative to fu

1
‘.7%.“0 N 0

Time relative to full reanalysis
o
(@)

10—1_

o
o

NoOpt Wi CI-DI-W| NoOpt Wi CI-DI-WI
Curated Generated, initial analysis <1s, full reanalysis <1s
(32 programs) (880 programs)

$

$

®

$
Curated benchmarks Generated benchmarks, Generated benchmarks, Generated benchmarks,

- 10-3 1 S (32 programs) initial analysis <1s, initial analysis >=1s, initial analysis >=1s,

Nobpt WI CI-[5I-WI Nobpt WI CI-[jl-WI full reanalysis <1s full reanalysis <1s full reanalysis >=1s

Generated, initial analysis >=1s, full reanalysis <1s Generated, initial analysis >=1s, full reanalysis >=1s (869 programs) (33 programs) (35 programs)
- (33 proarams) (37 proarams)

VMCAI23

' $ ¢
'

=
o

w
-

Time relative to full reanalysis
= =
< R
Time relative to full reanalysis
S
6LO

Time relative to a full reanalysis
S)

10—1_

107"

=
o
o

SCAM25

19

Evaluation: performance

=
N

>0 &

=
o
<>
=
o
=

*
{

o
o0

Time of an incremental update compared to a full reanalysis of the program

o
D

Largest group. Faster for 50% of
programs. More outliers.

Time relative to full reanalysis
O ¢ o b
N (@)

Time relative to full reanalysis

o
o

¢
¢
0
’
¢
$
¢
10° ‘

NoOpt Wi CI-DI-WI NoOpt Wi CI-DI-WI
Curated Generated, initial analysis <1s, full reanalysis <1s
(32 programs) (880 programs)

' $ ¢
'

¢
U
¢
1

$ ‘ ‘

=
o

w
-

—
o
o

=
o
N

Time relative to a full reanalysis
S}

10—1_

107 o

=
o
=

$
$
1072 b
$

Generated benchmarks,
initial analysis <1s,

full reanalysis <1s
(869 programs)

Time relative to full reanalysis
o
o

Time relative to full reanalysis

Generated benchmarks, Generated benchmarks,
initial analysis >=1s, initial analysis >=1s,
full reanalysis <1s full reanalysis >=1s
(33 programs) (35 programs)

L Curated benchmarks
S 10-3 1 (32 programs)
NoOpt Wi CI-DI-WI NoOpt Wi CI-DI-WI
Generated, initial analysis >=1s, full reanalysis <1s Generated, initial analysis >=1s, full reanalysis >=1s
- (33 proarams) (37 proarams)

VMCAI23

SCAM25

20

Evaluation: performance

Time of an incremental update compared to a full reanalysis of the program

10* ——

—
o
w

-
o
N

[

Sl
4r

Time relative to a full reanalysis
=) o

—
<

107
Curated benchmarks Generated benchmarks, Generated benchmarks, Generated benchmarks,
(32 programs) initial analysis <1s, initial analysis >=1s, initial analysis >=1s,
full reanalysis <1s full reanalysis <1s full reanalysis >=1s
(869 programs) (33 programs) (35 programs)

SCAM25

Overall: performance hit <« VMCAI23

e plenty of optimisation opportunities,
as we focused on regaining precision:

optimise data structures and algorithms

run cycle detection & invalidation less often than after
every component analysis

invalidate less aggressively so some addresses in
cycle retain their value

heuristics to determine when to analyse from scratch
and when to analyse incrementally

* but results now as precise as a full re-analysis

21

Conclusion

Incrementalisation to the rescue

 perform change impact analysis

Initial]

Initial analysis

Approach to incrementalisation revisited

Initial from AST changes to previous analysis results
rogram J result _ . .
prog * until a new fixed point has been found :
dependency-driven invalidate
compare results for
recompute component to previous
Program _____________ffo_g_ffin_ih_af_gff____________> Incremental impacted component version and remove outdated
update update as usual components, effects, store
contributions
\ 4 \ 4
Updated] Full (from-scratch) reanalysis Updated Van der Plas et al. (SCAM 2020) Incremental Flow Analysis through Computational Dependengzn Iieification
program result Van der Plas et al. (VMCAI 2023) Result Invalidation for Incremental Modular Analyses i-

Problem: prevents precise updates

invalidation of outdated contribution of Main:
only #f stored at arg

(letrec

(if curr . ;

5 T [m] A ° -
X write(#t) readf#t) ™ o # P .
(loop curr) Y - = (}----,‘@
"Sto n . -
(loop arg)N)) P ’ S I 'nformation
(fun (<change> #£ #f)))

flow graph
program change re-analysis of impacted component

cylic reinforcement of lattice values
value of curr is used in its own computation,

detect SCCs
((fun (lambda (arg)
(1etrec RS - Address _ Sources e e’
((loop (lambda (curr) -]

meaning that the old value of curr influences the computation of the new one, leading to precision loss

13

15

i
] I L]
;
G | = o
J =
|]
.

fast, but not yet
fully precise

Solution: identify cycles and “refine” values within

sound, but drastic

set all
addresses to 1,
and trigger re-

refinement condition analysis

* external incoming value is

updated non-monotonically

» SCC is partially broken or a

value is no longer flowing to it

* a literal value is no longer used

Preprint link

