
Handling
Cyclic Reinforcement of Lattice Values in

Incremental
Dependency-driven Static Analysis

Jens Van der Plas, Quentin Stiévenart, Coen De Roover

coen.de.roover@vub.be

SCAM 2025  
8-9 September 2025  

Auckland, NZ

Credit where credit is due

2

Quentin

Jens

• Where is this class instantiated?

• Which code will never be executed?

• Can this acces raise a NullPointerException?

• Can this integer arithmetic overflow?

• May sensitive information leak outside?

• …

answer questions about any execution of the program, without executing it

const onClickHandler = () => {
 const $ = document.querySelector;
 let pass = $("#pass").value;
 console.log(pass);
} source of

sensitive
informationsink to be avoided

3

Static program analysis

who have at least a basic understanding of program analysis
may have di↵erent views about the topic than those who are
not familiar with it. For the context of this paper, we label
these developers experts. 74% of respondents were at least
familiar with program analysis. In addition, security issues
are especially important to software companies, and security
is often given high priority by development teams. In the
research community, security is a significant subarea in pro-
gram analysis that receives a large amount of attention. We
refer to developers who indicate that security is a top concern
to them as security developers. 40% of respondents indicated
that they are security developers. For many questions, we
examine the answers provided by developers who are familiar
with program analysis and also by those who indicate that
security is a top concern for them. We report cases where
there is a statistically significant di↵erence between these
groups and the answers of the rest of the sample. In cases
where there are only two alternatives (e.g., using program
analysis versus not using it), we use a Fisher’s exact test [30].
When there are more than two choices, such as the frequency
of running program analysis, we use a �2 test to assess the
di↵erence in distributions between these groups.
Some of the questions on our survey asked developers to

select and rank items from a list. For example, we asked
developers to rank the pain points they encountered using
program analysis as well as the code issues that they would
like program analyzers to detect. To analyze the answers,
for each option o, we compute the sum of the reciprocals
of the rank given to that option for each developer d that
responded (d 2 D):

Weight(o) =
X

d2D

1
Rankd(o)

Ranks start at one (the option with the greatest importance)
and go up from there. If an option is not added to the ranked
list by a developer, the option is given a weight of zero for
that developer.
In Section 5, we also give an overview of the program

analyzers that the survey respondents use the most.

2.2.1 What makes program analyzers difficult to use?
In our beta survey, we asked developers what pain points,

obstacles, and challenges they encountered when using pro-
gram analyzers. We then examined their responses to create
a closed response list of options. In the final survey, we asked
developers to select and rank up to five of the options from
the list. Figure 1 shows their responses and gives insight
into what developers care about most when using program
analyzers. Many of our findings, such as the fact that false
positives and poor warning messages are large factors, are
similar to those of Johnson et al. [39]; their work investigates
why software engineers do not use static analysis tools to
find bugs through a series of 20 interviews (see Section 6).
The largest pain point is that the default rules or checks

that are enabled in a program analyzer do not match what
the developer wants. Developers mentioned that some default
program analysis rules, such as enforcing a specific convention
(for instance, Hungarian Notation) to name variables or
detecting spelling mistakes in the code or comments, are not
useful, and on the contrary, they are actually quite annoying.
Mitigations to this problem may include identifying a small
key set of rules that should be enabled (rather than having

Not cross platform
Misses too many issues

No support for custom rules
Can't handle all language features

Complex user interface
Can't selectively turn off analysis

No ranking of warnings
No suppression of warnings

Bad visualization of warnings
Difficult to fit into workflow

No suggested fixes
Too slow

Too many false positives
Bad warning messages

Wrong checks are on by default

0 20 40 60 80

Pain Points Using Program Analyzers

Figure 1: Pain points reported by developers when

using program analyzers.

all rules enabled, which is often the case), or making the
process of selecting the rules and checks that are enabled easy
for developers. Just as helpful is knowing the pain points at
the bottom of the list. Developers care much more about
too many false positives than about too many false negatives
(“Misses too many issues”). One developer wrote of their
team’s program analyzer “so many people ignore it because
it can have a lot of false positives”. Also, the ability to write
custom rules does not appear important to many, unlike in
the investigation by Johnson et al. [39].

We also asked developers if they had used program analysis
but stopped at some point. Only 9% of respondents indicated
that they fell into this category. When asked why they
stopped, there were three main reasons. 24% indicated that
the reason was because the team policy regarding program
analysis changed so that it was no longer required. Similarly,
18% indicated that they moved from a company or team
that used program analysis to one that did not. Another
21% reported that they could not find a program analyzer
that fit their needs; about half said this was due to the
programming language they were using. This highlights
one aspect of adoption of program analyzers that we also
observed in discussions with developers: often, their use of
analyzers (or lack thereof) is related to decisions and policies
of the team they are on.

Program analysis should not have all rules on by default.

High false positive rates lead to disuse.

Team policy is often the driving factor behind use of
program analyzers.

2.2.2 What functionality should analyzers have?
One of the primary reasons why a program analyzer may

or may not be used by a developer is whether the analyzer
supports the programming language (or languages) that the
developer uses. We therefore asked developers what lan-
guages they use in their work. Because the list was quite long,
we aggregated responses into programming language cate-

What (375 Microsoft) developers need

4

Christakis et al. [ASE2016]

What Developers Want and Need from Program Analysis:
An Empirical Study

Maria Christakis Christian Bird
Microsoft Research, Redmond, USA
{mchri, cbird}@microsoft.com

ABSTRACT
Program Analysis has been a rich and fruitful field of research
for many decades, and countless high quality program anal-
ysis tools have been produced by academia. Though there
are some well-known examples of tools that have found their
way into routine use by practitioners, a common challenge
faced by researchers is knowing how to achieve broad and
lasting adoption of their tools. In an e↵ort to understand
what makes a program analyzer most attractive to develop-
ers, we mounted a multi-method investigation at Microsoft.
Through interviews and surveys of developers as well as anal-
ysis of defect data, we provide insight and answers to four
high level research questions that can help researchers design
program analyzers meeting the needs of software developers.
First, we explore what barriers hinder the adoption of

program analyzers, like poorly expressed warning messages.
Second, we shed light on what functionality developers want
from analyzers, including the types of code issues that de-
velopers care about. Next, we answer what non-functional
characteristics an analyzer should have to be widely used,
how the analyzer should fit into the development process, and
how its results should be reported. Finally, we investigate
defects in one of Microsoft’s flagship software services, to
understand what types of code issues are most important to
minimize, potentially through program analysis.

CCS Concepts
•General and reference ! Empirical studies;

•Software and its engineering! Software defect anal-

ysis;

Keywords
program analysis, code defects

1. INTRODUCTION
Large software companies have recently started building

program analysis ecosystems, like Google’s Tricorder [49]

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE’16, September 03-07, 2016, Singapore, Singapore
c� 2016 ACM. ISBN 978-1-4503-3845-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2970276.2970347

or Microsoft’s CloudBuild [31]. These ecosystems allow for
distributively running several analyzers, each with its own
attributes, like speed of the analysis, type of detected code
issues, or number of true or false positives. Designers of
such ecosystems need to decide which analyzers should run
and when, e.g., in the editor, as part of the build, or during
code review. But how should the decisions be made? Which
kinds of program analyzers are valuable to software engi-
neers, rather than a waste of time? How do they fit in the
development process? How should their results be reported?

So far, much research and many studies on program analy-
sis tools have focused on the completeness of these tools (do
they report spurious warnings?), their soundness (do they
miss bugs?), automation, performance, annotation overhead,
and modularity. However, as companies integrate program
analyzers as part of their development process, more inves-
tigation is needed into how these tools are used in practice
and if practitioners’ needs are being met. We posit that for
research in this area to be impactful, our community must
understand the practices and needs of software developers
with regard to program analysis.

In an e↵ort to improve this understanding, our paper
contains an empirical investigation at Microsoft to answer
the following high level research questions.

1. What barriers hinder the adoption of program analyzers
by practitioners?

2. What functionality do practitioners want from program
analyzers?

3. What non-functional characteristics should a program
analyzer have to be widely used?

4. What code issues occur most in practice that program
analyzers should try to detect?

For our purposes, we define program analysis as the process
of automatically analyzing the behavior of a program without
running it, that is, we are only considering static program
analysis. Program analysis detects potential issues in the
code and gives feedback. Feedback is in the form of warnings
that are either true or false positives. True positives flag real
issues in the code, whereas false positives warn about code
issues that do not occur in practice. We do not consider the
compiler to be a program analyzer to only focus on tools
whose primary functionality is program analysis and that
are not by default part of the software development process.

Our study comprises a number of investigative techniques.
We interviewed and surveyed developers from a diverse group

A related functionality is the ability to analyze a changelist
(also known as a commit) rather than the entire codebase.
This type of functionality can help developers assess the
quality and impact of a change before it is checked into
the source code repository. 16% of developers indicated
that they have and use this functionality in the program
analyzer they use. Another 56% said that they do not have
this functionality, but it would be an important factor in
adopting a program analyzer. In sum, this 72% of developers
use or would like this ability. When looking at experts, this
value jumps to 77% (no change for security developers).

Other functionality is less attractive. Many analyzers
provide the ability for developers to write their own program
analysis rules. However, sometimes the learning curve can
be steep or the background required may be deep in order to
write custom analysis rules. When asked about the ability to
write custom rules, 8% said that they have the functionality
and use it and 26% said it is an important factor, while
the rest said they either do not use it or do not care about
having it. 66% of experts and 61% of security developers also
indicated that they do not use or care about this functionality.
We postulated that the reason why developers are not

interested in the ability to write custom program analysis
rules is because they want to be able to select an analyzer
and start using it without much e↵ort. In fact, this is not
the case. We asked developers whether they would be willing
to add assertions, pre-, postconditions, and/or invariants to
their code if this would improve the analysis results. Fully
79% of developers said they would add at least one of these
types of specifications to their code, and 35% indicated that
they would be willing to write all of them. This provides
evidence that developers may be willing to provide additional
information to program analyzers in return for better results
(e.g., better precision). When asked about the form that such
code specifications should take, an overwhelming majority
(86%) of developers said that they would be more willing to
annotate their code with specifications if these were part of
the language, for example taking the form of nun-nullable
reference types or an assert keyword.
One feature of program analyzers that developers use

heavily is the ability to suppress warnings. 46% of developers
indicated that they use some mechanism to suppress warnings.
The primary methods are through a global configuration file,
source code annotations (i.e., not in comments), annotations
in source code comments, an external suppression file, and
by comparing the code to a previous (baseline) version of
it [45]. When asked which of these methods they like and
dislike, 76% of those that use source code annotations like
them, followed by using a global configuration file (63%) and
providing annotations in code comments (56%).

Program analyzers should prioritize security and best prac-
tices and deal with exceptional control flow and aliasing.

Developers want the ability to guide program analyzers
to particular parts of the code and analyze changelists.

While most are not interested in writing custom rules,
developers are willing to add specifications in their code
to help program analyzers.

Suppressing warnings is important, preferably through
code annotations.

2.2.3 What should the non-functional characteristics
of program analyzers be?

In the previous section, we focused on the functionality that
developers indicate they want in program analyzers. When
examining characteristics, we investigate non-functional as-
pects of program analyzers, such as how long they should take
to perform the analysis, how often their warnings should be
correct, and how they should fit into the development process.
In many cases, there is a trade-o↵ between characteristics
(e.g., an analysis that has fewer false positives may include
more complex techniques, such as alias analysis, which would
require longer to complete). In these trade-o↵ situations, we
asked developers to indicate what characteristic they would
sacrifice in order to improve another.
The time taken by a program analyzer is an important

characteristic to developers because it can a↵ect how often
and where the analyzer can be run, which directly influences
the utility of the analyzer to the developer. When asked how
long a developer would be willing to wait for results from a
program analyzer, 21% of developers said that it should run
on the order of seconds, and 53% said they would be willing
to wait multiple minutes. Thus, long running analyzers that
exceed a few minutes would not be considered by nearly
three quarters of developers.
The time required for an analysis dictates where it fits

into the development process. When asked where in their
development process they would like to use program analyz-
ers, 25% of developers said every time they compile, 24%
said once their change was complete but before sending out
a code review request, 10% said during the nightly builds,
8% said every time unit tests were run, and 23% said they
would like to run it at every stage of development.

Related to how a program analyzer should fit into the
development process is how the results of the analyzer should
be shown to the developer. The top four answers from
developers are shown in Figure 5. The preferred location
by a wide margin is in the code editor followed by the build
output. This is in line with the findings of the interviews
by Johnson et al. [39]: all 20 participants in their interviews
wanted to be notified of issues in their code either in the
IDE or at build/compile time. Moreover, one of the main
lessons learned from the FindBugs experiences at Google [21]
was that developers pay attention to warnings only if they
appear seamlessly within the workflow.

Warnings that are false positives are cumbersome and time
consuming. We asked developers the largest false positive
rate that they would tolerate. We show the results as a
reverse cumulative distribution curve in Figure 6, with the
acceptable false positive rate on the x-axis and the percent
of developers that find that rate acceptable on the y-axis.
From the graph, 90% of developers are willing to accept up

In a browser

In the code review

In the build output

In my editor

0 50 100 150 200 250

Where Should Analysis Be Shown?

Figure 5: Where developers would like to have the

output of program analyzers.

Incrementalisation to the rescue

5

Our approach to incrementalisation

6

• perform change impact analysis 
from AST changes to analysis results to know what can be kept 

• until a new fixed point has been found
• remove and refine outdated results
• add new results

by rescheduling dependents of changed result:
 requires reifying computational dependencies

Reified computational dependencies

7

(define x 0)
(define (fun) (inc) x)
(define (inc) (set! x (+ x 1)) #t)
(fun)

Start of the analysis

Global store
… ↦ ⊥

Worklist
Main

Reified computational dependencies

8

Analysed main
Global store

x ↦Int
…↦ ⊥

Global store
 x ↦ Int

… ↦ ⊥

Worklist
fun

(define x 0)
(define (fun) (inc) x)
(define (inc) (set! x (+ x 1)) #t)
(fun)

Reified computational dependencies

9

Analysed fun

Global store

x ↦ Int

return(fun) ↦ Int
… ↦ ⊥

Worklist
inc

Main

(define x 0)
(define (fun) (inc) x)
(define (inc) (set! x (+ x 1)) #t)
(fun)

Reified computational dependencies

10

Analysed inc

Global store

x ↦ Int
return(fun) ↦ Int

return(inc) ↦ Bool
… ↦ ⊥

Worklist
Main

fun

(define x 0)
(define (fun) (inc) x)
(define (inc) (set! x (+ x 1)) #t)
(fun)

Reified computational dependencies

11

End of analysis

Global store

x ↦ Int
return(fun) ↦ Int

return(inc) ↦ Bool
return(Main) ↦ Int

Worklist
∅

(define x 0)
(define (fun) (inc) x)
(define (inc) (set! x (+ x 1)) #t)
(fun)

Approach to incrementalisation revisited

12

• perform change impact analysis 
from changes to source code modules to components in previous analysis results 

• until a new fixed point has been found
invalidate

compare results for
component to previous

version and remove outdated
components, dependencies,

store writes

recompute
impacted component

as usual

Van der Plas et al. (SCAM 2020) Incremental Flow Analysis through Computational Dependency Reification

Van der Plas et al. (VMCAI 2023) Result Invalidation for Incremental Modular Analyses

dependency-driven

fast, but not yet
fully precise

can change
values

writes to the store ω to be removed. The strategies are
applied within the CAinter, meaning that the CAintra remains
untouched. This preserves the generality of the method, as the
requirements for the CAintra remain minimal.

As explained in Section II-A, the CAintra generates effects
that correspond to the dependencies of the analysed compo-
nent. After every CAintra, the CAinter uses the generated effects
and store accesses to invalidate outdated parts of the results,
by comparing them to the effects and store accesses registered
during the previous analysis of the component. This way, for
example, the store of the analysis can be made more precise
by removing outdated writes of components. However, as the
CAintra remains unchanged, CAintra itself remains monotonic.

Consider again the program in Listing 2 to see how the
precision can be improved. Due to the changes, MAIN and
FUN need to be reanalysed; both write to var. Suppose MAIN
is reanalysed first. It now writes String to var instead of Int,
a non-monotonic change. This updated write is now joined
with the previous write of FUN (Int, which has not been
updated yet), and var becomes {Int, String}. When FUN
is reanalysed, its updated write (String) is joined with the
updated write of MAIN, and the value of var becomes String.

However, the techniques cannot regain precision in the parts
of the result affected by cyclic reinforcements, which is dis-
cussed next. We will henceforth refer to the incrementalisation
method of Van der Plas et al. [13] as the MODINC approach.

C. Cyclic Reinforcement of Lattice Values

We now describe cyclic reinforcement of lattice values. We
first repeat some general terminology on information flow.

1) Information Flow: We define information flow using the
general definitions of Denning and Denning [22], [23]:

Information flows from an object x to an object y whenever
information stored in x is transferred to, or used to derive information
transferred to, object y. An explicit flow from x to y occurs whenever
the operations generating it are independent of the value of x. An
implicit flow from x to y occurs whenever a statement specifies a
flow from some arbitrary z to y, but the execution depends on the
value of x.

Explicit flows correspond to a data dependence and implicit
information flow correspond to a control dependence [24]. For
example, with y := x + v, there is an explicit information
flow from x to y and from v to y. In contrast, when a piece
of code is conditionally executed, there is a flow from the
condition to the objects assigned in the branches. For example,
if y is assigned to z given a condition depending on the value
of x, then there is an implicit flow from x to y.

2) Cyclic Reinforcements: Cyclic reinforcement of lattice
values is a phenomenon occurring in static analysis when
the lattice value stored at a certain address in ω influences
itself [13], [15]–[17]. In this case, the value reinforces itself
as it has become a source for its own value. If the analysis is
not aware, it will never be able to refine the value(s) within the
cycle due to the monotonicity in the analysis (a value joined
together with a value influenced by itself can never be refined).

(a) Information flow. Cyclic flows shown in yellow boxes.

(b) Components and effects, omitting return values, the ad-
dresses fun and loop, and their effects.

Fig. 2: Visualisation of the analysis of the program shown in Listing 3.

The occurrence of these cyclic reinforcements heavily depends
on the abstractions within the analysis.

Consider the program in Listing 3. It defines an unary
function fun which defines a new internal function loop.
If the argument to loop is #f, the loop stops and returns
the string "stop". Otherwise, the loop continues indefinitely.
The function fun is called with #t.
(letrec ((fun (lambda (arg)

(letrec ((loop (lambda (curr)

(if curr

(loop curr)

"stop"))))

(loop arg)))))

(fun #t))

Listing 3: Program causing cyclic reinforcements within the analysis.

Fig. 2a shows the information flow in (the analysis of) the
program. An explicit information flow goes from the literal
#t to the variable arg and from there to curr. Importantly,
due to the recursive call in loop, there is also an explicit
flow from curr to itself. This has been marked in yellow
and it is here that a cyclic reinforcement occurs. (In general,
cyclic reinforcements can span any number of addresses and
can include both explicit and implicit flows.)

To show the troublesome nature of these cycles, let’s assume
the program in Listing 3 is updated so that fun is no
longer called with #t but with #f instead. The MODINC
approach [13] handles this change as follows. MAIN is directly
affected so the incremental update starts by reanalysing it. The
contribution of MAIN to arg becomes #f, and using write
invalidation, the value is updated precisely in ω. This then
triggers the reanalysis of FUN, whose contribution to curr

becomes #f as well (see Fig. 3). Since the contribution of
FUN is updated non-monotonically, write invalidation joins the

Problem: cyclically reinforced values

13

(letrec
 ((fun (lambda (arg)
 (letrec
 ((loop (lambda (curr)

 (if curr
 (loop curr)
 "stop"))))

 (loop arg)))))
 (fun #t))

curr computed
through data flow

equations
involving curr

Problem: prevents precise updates

14

(letrec
 ((fun (lambda (arg)
 (letrec
 ((loop (lambda (curr)

 (if curr
 (loop curr)
 "stop"))))

 (loop arg)))))
 (fun (<change> #t #f)))

Fig. 3: Incremental update for the program in Listing 3, before the reanalysis of LOOP.
Again, return values and the addresses fun and loop have been omitted.

updated contribution of FUN, #f, to the contribution of LOOP,
#t, and the value of curr becomes Bool.

Yet, it is clear that in the updated program, curr is always
#f. Here, the incremental update has lost precision as a full
reanalysis of the updated program would infer correctly that
curr now is #f. To see what causes this precision loss,
consider the contribution of LOOP, which is #t when the
contribution of FUN is updated. Importantly, this contribution
is #t because, when LOOP was first analysed, curr was true.
The value of curr is thus influencing its own computation,
meaning that the old value of curr influences the computation
of the new one, for which precision is lost. It is exactly
this phenomenon that is called cyclic reinforcement of lattice
values [13], [15]–[17], and for which we provide a solution.

III. DETECTING CYCLIC REINFORCEMENTS

We now describe how cyclic reinforcements can be detected
within an analysis. In Section IV, we then explain how lattice
values within such cycles can be made precise once the they
have been detected. Our method is designed so that only minor
modifications to the underlying analysis are required. Our
work thus follows the rationale of the MODINC approach [13],
so that it can be seen as an precision-improving extension to
the MODINC approach.

To detect cyclic reinforcements, the analysis needs to iden-
tify how values flow between addresses in ω. This way, the
analysis can infer whether the computation of a value is
influenced by itself, either directly or indirectly. This thus boils
down to an information-flow problem, where the information
flow within the analysis needs to be computed and checked
for cycles; Section IV explains how precision can be regained
in the presence of these cycles. We now first present a
method to detect cyclic reinforcements that only requires
minor modifications to the incrementalised analysis.

In a DDA, all values are stored in ω, which is thus
the enabler for cyclic reinforcements. Thus, to detect such
cyclic reinforcements, flows of information between different
addresses in ω need to be computed and checked for cycles.
We first discuss the inference of the information flow and then
explain how it can be used to detect cyclic reinforcements.

A. Information-flow Inference

To infer the information flow within the analysis, we only
requires minor changes to the analysis itself. Our method relies
on an information-flow graph (IG) to determine whether cyclic
reinforcements are present within the analysis. The objective

is to infer the information flow between addresses in ω, the
location where lattice values are stored. The nodes in the IG
then correspond to the addresses in ω and the edges indicate
how information flows between these addresses.

1) Explicit Information Flow: To track how information
flows between the addresses in ω, we annotate every value
with labels corresponding to the addresses in the store that
the value is influenced by. This happens as follows:
• When an address a is looked up in ω, the resulting value
v is labelled with that address, v{a}. This indicates that the
value v depends on the (value stored at) address a.

• When an value vl is written to an address a in ω, the labels l
are first stripped of the value and then the write happens as
normal. This avoids labels in ω, so that components are not
reanalysed when only the flow information is updated. The
information represented by the labels l is stored separately
and represents the edges in the IG, it indicates that the value
stored at a has been influenced by all addresses in l.

• The result of a join depends on all addresses either of its
arguments are depending on. Thus, when two values are
joined together, so are their labels: vl1 →wl2 ↑ (v →w)l1→l2

• The application of primitive functions within the analysis
follows the same reasoning as for the join operator: the result
is dependent on all addresses depended on by any of its
arguments: f(vl1 , wl2 , . . . , xln) ↑ f(v, w, . . . , x)⋃n

i=1 li

For explicit information flow, the labels with which values are
annotated are thus propagated through the operations. When
values are written to the store, the labels are stored separately
in a map dfR that stores, per address, all addresses influencing
the given address. dfR thus stores the reverse information
flow data. Importantly, this data is also stored on a per-
component basis, so that the information-flow data inferred
by a component can be removed upon its reanalysis, allowing
outdated information-flow data to be removed as well.

There is, however, one other aspect of explicit data flow:
the use of literal values within the program. So far, we have
described how values in ω are tracked as the analysis performs
operations on them. However, these values originate from
literals that are present in the program text. Literals may be
used conditionally or not at all, and their use may change
when the program gets updated. To this end, the analysis also
needs to track their use. Therefore, whenever a literal value c
is evaluated by the analysis, the resulting value is labelled with
a specific label l corresponding to the literal expression in the
program text, resulting in a value c{l}. This allows to track
the influence of literal values, and will enable the incremental
analysis to handle situations in which the use of a literal value
changes within a reinforcing cycle (see Section IV-B).

2) Implicit Information Flow: Implicit information flows
arise when the execution of a piece of code is conditional.
In this case, there is a flow between the condition and the
code executed conditionally. Due to nested conditions and
conditional function applications, there may be many implicit
information flows. To detect them, the analysis keeps track
of an implicit flow context (IFC) that contains all labels that
have influenced the current control flow. As the number of

program change re-analysis of impacted component

invalidation of outdated contribution of Main:
only #f stored at arg

up-to-date contribution #f of
fun is joined with outdated

contribution #t of loop:
Bool stored at curr

cylic reinforcement of values
the old value of curr from the previous program version influences the computation of the new one, leading to precision loss

Solution: track information flow between addresses

15

lightweight: label values with source address on store reads, propagate the labels, and extract them upon store writes

explicit flow implicit flow and literals

value v1in blue address
stems from pink address

result of join carries
labels of operands

value in blue address
stems from literal 0

computations in
branches influenced by

labels of condition

Solution: identify cycles and “refine” values within

16

information
flow graph

detect SCCs

z

z

refinement condition

• external incoming value is
updated non-monotonically

• SCC is partially broken or a
value is no longer flowing to it

• a literal value is no longer used

set all
addresses to ⊥,
and trigger re-

analysis

drastic, but sound

Evaluation

17

RQ1: Precision
Does the result of an incremental update with cycle invalidation  
always match the result of a full reanalysis?

RQ2: Performance
How does an incremental update with cycle invalidation perform  
compared to a full reanalysis of the updated program?

Implemented in MAF framework (Scala implementation, Scheme programs)

•33 curated refactoring-like changes to benchmark programs 13

•950 generated versions of benchmark programs	 	 163

with cycles

Evaluation: precision

18

Compare all values in the store to the store of a full reanalysis

• unsound
• fully precise
• imprecise

➡ No unsoundness
➡ Precise (on all but one program,  

 missed one cycle: edge case)

𝑣𝑖𝑛𝑐 ⊏ 𝑣𝑟𝑒𝑎𝑛 →
𝑣𝑖𝑛𝑐 = 𝑣𝑟𝑒𝑎𝑛 →
𝑣𝑟𝑒𝑎𝑛 ⊏ 𝑣𝑖𝑛𝑐 →

VMCAI23

now all but one
bar at 100%

Evaluation: Performance

47

VMCAI
2023 Now

19

Evaluation: Performance

47

VMCAI
2023 Now

VMCAI23 SCAM25

Evaluation: performance

Faster for about
50% of programs

Performance gain possible
depends on size of impact of the

program changes.

And some of the generated changes
are rather drastic

(e.g., removal of function calls).

Evaluation: Performance

47

VMCAI
2023 Now

20

Evaluation: Performance

47

VMCAI
2023 Now

VMCAI23 SCAM25

Largest group. Faster for 50% of
programs. More outliers.

Evaluation: performance

21

Evaluation: Performance

47

VMCAI
2023 Now

SCAM25

Evaluation: performance

Overall: performance hit VMCAI23

• plenty of optimisation opportunities,  

as we focused on regaining precision:

• optimise data structures and algorithms

• run cycle detection & invalidation less often than after

every component analysis

• invalidate less aggressively so some addresses in

cycle retain their value

• heuristics to determine when to analyse from scratch

and when to analyse incrementally

• …

• but results now as precise as a full re-analysis

↔

Conclusion
Incrementalisation to the rescue

4

Approach to incrementalisation revisited

11

• perform change impact analysis 
from AST changes to previous analysis results 

• until a new fixed point has been found
invalidate

compare results for
component to previous

version and remove outdated
components, effects, store

contributions

recompute
impacted component

as usual

Van der Plas et al. (SCAM 2020) Incremental Flow Analysis through Computational Dependency Reification

Van der Plas et al. (VMCAI 2023) Result Invalidation for Incremental Modular Analyses

dependency-driven

fast, but not yet
fully precise

Problem: prevents precise updates

13

(letrec
 ((fun (lambda (arg)
 (letrec
 ((loop (lambda (curr)

 (if curr
 (loop curr)
 "stop"))))

 (loop arg)))))
 (fun (<change> #t #f)))

Fig. 3: Incremental update for the program in Listing 3, before the reanalysis of LOOP.
Again, return values and the addresses fun and loop have been omitted.

updated contribution of FUN, #f, to the contribution of LOOP,
#t, and the value of curr becomes Bool.

Yet, it is clear that in the updated program, curr is always
#f. Here, the incremental update has lost precision as a full
reanalysis of the updated program would infer correctly that
curr now is #f. To see what causes this precision loss,
consider the contribution of LOOP, which is #t when the
contribution of FUN is updated. Importantly, this contribution
is #t because, when LOOP was first analysed, curr was true.
The value of curr is thus influencing its own computation,
meaning that the old value of curr influences the computation
of the new one, for which precision is lost. It is exactly
this phenomenon that is called cyclic reinforcement of lattice
values [13], [15]–[17], and for which we provide a solution.

III. DETECTING CYCLIC REINFORCEMENTS

We now describe how cyclic reinforcements can be detected
within an analysis. In Section IV, we then explain how lattice
values within such cycles can be made precise once the they
have been detected. Our method is designed so that only minor
modifications to the underlying analysis are required. Our
work thus follows the rationale of the MODINC approach [13],
so that it can be seen as an precision-improving extension to
the MODINC approach.

To detect cyclic reinforcements, the analysis needs to iden-
tify how values flow between addresses in ω. This way, the
analysis can infer whether the computation of a value is
influenced by itself, either directly or indirectly. This thus boils
down to an information-flow problem, where the information
flow within the analysis needs to be computed and checked
for cycles; Section IV explains how precision can be regained
in the presence of these cycles. We now first present a
method to detect cyclic reinforcements that only requires
minor modifications to the incrementalised analysis.

In a DDA, all values are stored in ω, which is thus
the enabler for cyclic reinforcements. Thus, to detect such
cyclic reinforcements, flows of information between different
addresses in ω need to be computed and checked for cycles.
We first discuss the inference of the information flow and then
explain how it can be used to detect cyclic reinforcements.

A. Information-flow Inference

To infer the information flow within the analysis, we only
requires minor changes to the analysis itself. Our method relies
on an information-flow graph (IG) to determine whether cyclic
reinforcements are present within the analysis. The objective

is to infer the information flow between addresses in ω, the
location where lattice values are stored. The nodes in the IG
then correspond to the addresses in ω and the edges indicate
how information flows between these addresses.

1) Explicit Information Flow: To track how information
flows between the addresses in ω, we annotate every value
with labels corresponding to the addresses in the store that
the value is influenced by. This happens as follows:
• When an address a is looked up in ω, the resulting value
v is labelled with that address, v{a}. This indicates that the
value v depends on the (value stored at) address a.

• When an value vl is written to an address a in ω, the labels l
are first stripped of the value and then the write happens as
normal. This avoids labels in ω, so that components are not
reanalysed when only the flow information is updated. The
information represented by the labels l is stored separately
and represents the edges in the IG, it indicates that the value
stored at a has been influenced by all addresses in l.

• The result of a join depends on all addresses either of its
arguments are depending on. Thus, when two values are
joined together, so are their labels: vl1 →wl2 ↑ (v →w)l1→l2

• The application of primitive functions within the analysis
follows the same reasoning as for the join operator: the result
is dependent on all addresses depended on by any of its
arguments: f(vl1 , wl2 , . . . , xln) ↑ f(v, w, . . . , x)⋃n

i=1 li

For explicit information flow, the labels with which values are
annotated are thus propagated through the operations. When
values are written to the store, the labels are stored separately
in a map dfR that stores, per address, all addresses influencing
the given address. dfR thus stores the reverse information
flow data. Importantly, this data is also stored on a per-
component basis, so that the information-flow data inferred
by a component can be removed upon its reanalysis, allowing
outdated information-flow data to be removed as well.

There is, however, one other aspect of explicit data flow:
the use of literal values within the program. So far, we have
described how values in ω are tracked as the analysis performs
operations on them. However, these values originate from
literals that are present in the program text. Literals may be
used conditionally or not at all, and their use may change
when the program gets updated. To this end, the analysis also
needs to track their use. Therefore, whenever a literal value c
is evaluated by the analysis, the resulting value is labelled with
a specific label l corresponding to the literal expression in the
program text, resulting in a value c{l}. This allows to track
the influence of literal values, and will enable the incremental
analysis to handle situations in which the use of a literal value
changes within a reinforcing cycle (see Section IV-B).

2) Implicit Information Flow: Implicit information flows
arise when the execution of a piece of code is conditional.
In this case, there is a flow between the condition and the
code executed conditionally. Due to nested conditions and
conditional function applications, there may be many implicit
information flows. To detect them, the analysis keeps track
of an implicit flow context (IFC) that contains all labels that
have influenced the current control flow. As the number of

program change re-analysis of impacted component

invalidation of outdated contribution of Main:
only #f stored at arg

up-to-date contribution of
fun is joined with outdated

contribution of loop:
Bool stored at curr

cylic reinforcement of lattice values
value of curr is used in its own computation,  
meaning that the old value of curr influences the computation of the new one, leading to precision loss

Solution: identify cycles and “refine” values within

15

information
flow graph

detect SCCs

z

z

refinement condition
• external incoming value is

updated non-monotonically

• SCC is partially broken or a

value is no longer flowing to it

• a literal value is no longer used

set all
addresses to ⊥,
and trigger re-

analysis

sound, but drastic

