
Thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering:
Computer Science

INCREMENTAL
THREAD-MODULAR
STATIC ANALYSIS FOR
CONCURRENT
PROGRAMS WITH
FUTURES AND ATOMS

Jens Van der Plas
2018-2019

Promotor: Prof. Dr. Coen De Roover
Advisor: Dr. Quentin Stiévenart

Sciences & Bio-Engineering Sciences

A B ST R AC T

Building concurrent programs is hard as the use of multiple threads introduces nondeterminism

in their executions. This nondeterminism leads to bugs that are often subtle to detect and difficult

to resolve. Having tool support to detect such program defects may significantly reduce the effort

required to resolve concurrency-related bugs.

In recent years, multiple programming paradigms and programming constructs have been

developed to facilitate the development of concurrent programs. However, incorrect use of these

constructs may cause bugs. Atomic variables, or atoms, are an example of such constructs and

can be found in modern programming languages such as Clojure. Atoms provide concurrent but

race-free updates to shared state. In this dissertation, we apply the Abstracting Abstract Machines

(AAM) technique of Van Horn & Might, a well-known technique to build abstract interpreters,

to a concurrent language containing futures and atoms. We formalise this language using a

parallel CESK machine which is then systematically abstracted, obtaining the first AAM-based

abstract interpreter able to analyse a concurrent language with atoms.

An important aspect of an abstract interpreter is its performance. To be sound, an abstract

interpreter for concurrent languages must account for all possible thread interleavings in a

concurrent program. Recent work has already introduced thread-modular analysis techniques

to reduce the worst-case time complexity of such analyses. Recently, Stiévenart has introduced

ModConc, a general approach to the design of thread-modular analyses. The approach results

in an analysis that alternates between two phases: an intra-process analysis phase analyses each

thread in isolation, while an intra-process analysis phase tracks the behaviour of all threads and

invokes intra-process analyses where necessary. In this dissertation, we improve this algorithm

by introducing incrementality. We construct the results of the intra-process analysis in an

incremental way by allowing results from prior invocations to be reused. This way, we aim to

reduce the analysis time needed by the abstract interpreter, making the analysis more scalable

to large, real-world programs. Furthermore, we investigate additional optimisations that are

possible.

We evaluate our incremental analysis algorithm on a set of benchmark programs and show

that it reduces the average analysis time for most of our benchmark programs compared to the

original non-incremental algorithm. For several benchmarks, we find significant reductions of

the average analysis time, ranging from 40% up to 63%. On multiple occasions, the size of the

resulting abstract state graph is reduced as well, leading to fewer spurious paths in the result

graph. We find that IncAtom succeeds in reusing large parts of previously calculated results for

some benchmarks.

In summary, in this dissertation, we introduce an AAM-based incremental thread-modular

analysis and apply this to a concurrent language with futures and atoms. By doing so, we not

only extend the application domain of AAM-based analyses but also introduce a new algorithm

that improves the performance of thread-modular analyses, thereby improving their scalability

and making them applicable to increasingly large programs.

i

AC K NOW L E D G E M E N T S

First of all, I would like to thank my promotor Prof. Dr. Coen De Roover, whose enthusiasm

and confidence in this work helped me to successfully complete this thesis. Second, I would like

to thank my advisor, Dr. Quentin Stiévenart, for guiding me through this year. His expertise,

useful remarks and insights, as well as his continuous guidance, were of utmost importance for

the success of this work. He also provided me with useful pointers and ideas and always freed

up some of his time whenever I burst into his office, for which I am most grateful. I would also

like to thank all members of the Software Languages Lab for their interesting questions and

remarks during the intermediate thesis presentations, which allowed me to reflect on the work

I was doing.

I would also like to thank my family for their continuous support during this year, and always.

Their permanent encouragement and positive energy enabled me to focus on this work under

the best of circumstances. I would also like to thank them for giving me some useful hints and

for helping me read the unreadable.

Finally, I want to express my gratitude to all people who have read this dissertation in advance

and gave useful remarks to further improve this writing.

iii

TA B L E O F CO N T E N T S

1. Introduction 1

1.1. Motivation and Research Context . 1

1.2. Objectives and Contributions . 2

1.3. Overview of the Dissertation . 3

2. Introduction to Static Analysis 5

2.1. Fundamentals of Static Analysis . 5

2.2. Concrete and Abstract Interpretation . 7

2.2.1. Concrete Interpretation . 7

2.2.2. Abstract Interpretation . 8

2.2.3. Mathematical Preliminaries . 9

2.2.4. Formalising Abstractions . 10

2.3. Static Analysis for Concurrent Languages . 12

2.3.1. Non-Modular Static Analysis for Concurrent Languages 13

2.3.2. Thread-Modular Static Analysis for Concurrent Languages 15

2.4. Conclusion . 16

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms 19

3.1. λ0, a Sequential Base Language . 19

3.1.1. Syntax . 19

3.1.2. Concrete Semantics . 20

3.1.3. Intermezzo: Administrative Normal Form (ANF) 26

3.1.4. Abstract Semantics . 27

3.2. λφ, a Simple Concurrent Language . 31

3.2.1. Syntax . 31

3.2.2. Concrete Semantics . 33

3.2.3. Abstract Semantics . 35

3.3. λα, a Concurrent Language with Atoms . 38

3.3.1. Syntax . 38

3.3.2. Concrete Semantics . 41

3.3.3. Abstract Semantics . 43

3.4. Conclusion . 43

4. An Incremental Thread-Modular Analysis for λα 45

4.1. λε, a Formalisation of Thread Interference for λα 45

4.1.1. Effects . 46

4.1.2. Abstract Atomic Evaluation Relation . 47

4.1.3. Abstract Sequential Transition Relation . 47

4.1.4. Abstract Concurrent Transition Relation . 49

4.2. A Non-Incremental Thread-Modular Analysis Algorithm for λα 50

4.2.1. State Injection . 50

v

Table of Contents

4.2.2. Inter-Process Analysis Phase . 52

4.2.3. Intra-Process Analysis Phase . 52

4.2.4. Termination . 54

4.3. Incrementalising the Thread-Modular Analysis Algorithm for λα 54

4.3.1. General Approach . 56

4.3.2. Inter-Process Analysis Phase . 58

4.3.3. Intra-Process Analysis Phase . 58

4.3.4. Termination . 58

4.3.5. Soundness . 59

4.4. Optimisations . 59

4.4.1. Visited Set Caching . 59

4.4.2. Intra-Process Analysis Abortion . 60

4.5. General Considerations . 61

4.5.1. Filtering the Abstract State Graph . 61

4.5.2. Thread-Local Continuation Stores . 62

4.6. Example: Analysis of a Simple Concurrent Program 62

4.7. Conclusion . 66

5. Implementation 67

5.1. Background on Scala-AM . 67

5.2. Implementation of the Semantics of λα . 68

5.2.1. Implementation of Futures and a Non-Modular Concurrent Analysis . . . 69

5.2.2. Implementation of Atoms . 70

5.3. Implementation of the Modular Analyses for λα 72

5.3.1. Addition of Effects . 72

5.3.2. Implementation of the Thread-Modular Analyses 73

5.4. Schematic Overview of the Implementation . 74

5.5. Conclusion . 74

6. Evaluation 75

6.1. Soundness Testing . 75

6.1.1. Methodology and Experimental Setup . 75

6.1.2. Benchmark Programs . 77

6.1.3. Results . 79

6.2. Metrics for IncAtom . 80

6.2.1. Methodology and Experimental Setup . 80

6.2.2. Results . 82

6.3. Conclusion . 87

7. Related work 89

7.1. Analysis of Concurrent Programs . 89

7.1.1. Non-Modular Analysis of Concurrent Programs 89

7.1.2. Modular Analysis of Concurrent Programs 90

7.2. Incremental Static Analysis . 92

7.3. Improved Abstractions . 93

7.4. Algorithmic Optimisations . 94

7.5. Semantics for Combined Concurrent Programming Constructs 95

7.6. Conclusion . 96

8. Conclusion 97

8.1. Future Work . 98

8.1.1. Handling Source Code Changes . 98

vi

Table of Contents

8.1.2. State Filtering . 98

8.1.3. Introducing Effect Summaries . 99

8.1.4. Extended Evaluation . 99

8.2. Concluding Remarks . 99

A. Additional Transition Rules for λφ 101

B. Proofs 105

B.1. Termination of the Non-Incremental Modular Analysis Algorithm 105

Bibliography 107

vii

L I ST O F F I G U R E S

2.1. Example of a trace resulting from concrete interpretation. 8

2.2. Example of a graph resulting from abstract interpretation. Hats indicating ab-

straction have been omitted. 9

2.3. Hasse diagrams of different partially ordered sets. 10

2.4. Hasse diagram of the sign lattice. 11

2.5. Example analysis of a multithreaded program in which all interleavings must

be accounted for. Abstract state sm.n indicates that the abstract blue thread has

taken m steps and the abstract orange thread has taken n steps. Again, the hats

indicating abstraction have been omitted. 14

2.6. Example of a modular analysis result. The grey arrows denote inter-thread de-

pendencies. 16

3.1. Syntax of λ0, a simple sequential language. 20

3.2. State space for λ0. 21

3.3. Atomic evaluation rules for λ0. 22

3.4. Addresses for λ0. 23

3.5. Transition rules for λ0. 24

3.6. Evaluation of a non-terminating program. 25

3.7. Abstract state space for λ0. 28

3.8. Abstract atomic evaluation rules for λ0. 29

3.9. Abstract addresses for λ0. 30

3.10. Abstract transition rules for λ0. 30

3.11. Syntactic extensions for λφ, a simple concurrent language. 32

3.12. State space for λφ. 33

3.13. Thread identifiers for λφ. 34

3.14. Main concurrent transition rules for λφ. 35

3.15. Abstract state space for λφ. 36

3.16. Abstract thread identifiers for λφ. 37

3.17. Main abstract concurrent transition rules for λφ. 37

3.18. Syntax of λα, a concurrent language with atoms. 39

3.19. State space for λα. 41

3.20. Sequential transition rules for λα. 42

3.21. Abstract sequential transition rules for λα. 43

4.1. Effects for λε. 47

4.2. Modified abstract atomic evaluation rules for λε. 47

4.3. Modified abstract sequential transition rules for λε. 49

4.4. Modified abstract concurrent transition rules for λε. 50

4.5. Example of unreachable states in an abstract thread’s abstract state graph. 62

4.6. Result of analysing the program in Listing 4.2 using the modular analysis algo-

rithms. 64

ix

List of Figures

4.7. Result of analysing the program in Listing 4.2 using the non-modular analysis

algorithm. 65

5.1. Schematic overview of the components Scala-AM. The numbers indicate the

chapters of this dissertation for which a component is modified. 74

6.1. Specific trace in the graph of the main thread of the program in Listing 6.2. . . . 86

A.1. Concurrent transition rules for λφ (continued). 102

A.2. Abstract concurrent transition rules for λφ (continued). 103

x

L I ST O F TA B L E S

6.1. Specifications of the machine on which the experiments were executed. 76

6.2. Overview of the benchmarks. 78

6.3. Results of the experimental soundness evaluation of IncAtom. 80

6.4. Average time needed by the different static analysers to analyse the given bench-

marks in milliseconds together with the size of the 95% confidence interval. ∞
indicates a time out. Benchmarks for which no result was obtained are omitted. . 83

6.5. Detailed comparison of the average time needed by ModAtom and IncAtom for

the analysis of the different benchmarks. Times are denoted in milliseconds. . . . 84

6.6. Number of states in the abstract state graphs generated by the different algorithms

for the different benchmarks. ∞ indicates a time out and hence the absence of

measurements. 85

6.7. ACRR for the different benchmarks. The ACRR could not be computed for the

actors benchmark since no abstract thread is reanalysed during the analysis of

the benchmark. 87

xi

L I ST O F L I ST I NG S

2.1. Example of a multithreaded program with shared variables. 13

3.1. Example of program that is not in ANF. 26

3.2. ANF conversion of the program in Listing 3.1. 27

3.3. Parallel vector summation. 32

3.4. Solution to the Producer-Consumer Problem using atoms. 40

3.5. Implementation of spinning locks using atoms. 41

4.1. Parallel computation of the nth
Fibonacci number. 55

4.2. A simple concurrent program written in λα. 63

5.1. Implementation of the deref special form (part). 70

5.2. Implementation of the atom primitive. 71

5.3. Implementation of swap! on top of compare-and-set!. 71

5.4. Modifications to the implementation of the list primitive. 73

6.1. mcarlo benchmark program. 79

6.2. Scheme program for which IncAtom generates fewer states than ModAtom. . . . 86

xiii

1
I N T RO D U C T I O N

In this dissertation, we present two contributions to the state of the art in static analysis of con-

current programs. Our first contribution is the application of the Abstracting Abstract Machines

(AAM) technique of Van Horn & Might (2010) to a concurrent higher-order language containing

futures and atomic variables (atoms). By applying this technique to a language with these pro-

gramming constructs, we enable the analysis of concurrent higher-order programs that make

use of these programming constructs. Second, to reduce the worst-case time complexity of the

analysis, we follow Cousot & Cousot (1977)’s strategy of modular analysis, obtaining a thread-

modular analysis. ModConc, a design method for thread-modular AAM-based analyses, has

recently been presented by Stiévenart (2018). We find however that ModConc analyses may

duplicate work and we present an incremental variant that avoids this duplication and hence

overcomes the corresponding performance overhead.

1.1. Motivation and Research Context

Modern-day society has come to rely on software, which has significantly impacted our quality

of life through the automation of numerous processes. To support these applications, computer

manufacturers continuously invest effort to increase the performance of their systems. However,

it has become increasingly difficult for CPU manufacturers to further increase the performance

of individual processor cores (Etiemble, 2018). Instead, nowadays, multiple processor cores

are placed together on a single chip, further increasing the computing power of contemporary

processors.

Multicore processors have become increasingly common and many programming languages

provide support for writing concurrent, multithreaded programs. However, the use of mul-

tiple threads introduces nondeterminism in the execution of a program: the interleaving of

instructions from different threads may differ from one execution to another. This behaviour

has introduced new types of bugs, such as deadlocks and data races. Due to the nondeterminis-

tic nature of concurrent programs, a concurrency-related bug may only cause problems during

some executions of a program but remain harmless during others. Hence, concurrency bugs

typically are subtle and hard to find. Due to the importance of software in modern-day society,

such bugs can cause major damage when left unsolved. A prominent example is the Northeast

blackout of 2003, in which a concurrency-related software bug caused a power outage in a vast

part of the United States and Canada, affecting approximately 50 million people and resulting

1

1. Introduction

in instabilities of the power grid that lasted for weeks (Chadwick, 2013; Poulsen, 2004). Clearly,

tool support for detecting program defects and for ensuring quality is indispensable.

Static analysis techniques are used to infer program properties at compile time. They can

give strong guarantees about program behaviour and hence provide a strong means to detect

program defects. One technique to perform static analysis is abstract interpretation. An abstract

interpreter works similarly to a concrete interpreter but uses an approximation of a program’s

semantics. This way, a program’s behaviour can be approximated and program properties can

be derived. Van Horn & Might (2010) have presented Abstracting Abstract Machines (AAM), a

systematic approach to convert a concrete interpreter to an abstract interpreter, to facilitate the

construction of abstract interpreters.

Recent work has applied the AAM technique to concurrent higher-order programs with dy-

namic thread creation (Might & Van Horn, 2011; Stiévenart et al., 2015; Stiévenart, 2018). How-

ever, although the AAM technique has already been applied to several concurrency constructs,

the technique has not yet been applied to atoms, which provide a way to update shared state

without the risk of race conditions. Hence, current static analysers built using the AAM tech-

nique are unable to analyse programs containing atoms.

Building scalable and well-performing static analysers for concurrent programs is difficult. To

make analyses of concurrent higher-order programs scale, often, thread-modular designs have

been proposed. These analysis designs analyse the different threads of a program in isolation,

resulting in lower analysis times. Stiévenart (2018) presents ModConc, a general a general

approach to the design of thread-modular analyses. The approach results in an algorithm based

on two alternating phases. An intra-process analysis phase analyses each thread in isolation and

an inter-process analysis phase decides on the threads for which an intra-process analysis must

be run. Both analysis phases perform a fixed-point computation and therefore, it is possible

that an intra-process analysis is run multiple times for the same thread. When this is the case,

the algorithm discards any result that was obtained from a prior invocation of the intra-process

analysis phase for the given thread.

1.2. Objectives and Contributions

The goal of this dissertation is twofold. Our first objective is to apply the AAM technique of

Van Horn & Might (2010) to a concurrent language with futures and atoms. This will enable

our static analyser to analyse concurrent programs making use of these two programming

constructs. Our second objective is to alter the thread-modular analysis algorithm of Stiévenart

(2018) to make it incremental with regard to the computation of the analysis result for a single

thread, that is, to make it possible for results from a prior invocation of the intra-process analysis

of a thread to be reused upon reinvocation. By reusing previously computed results, we aim at

decreasing the analysis time to obtain analyses that scale better to large, real-world programs.

To achieve these objectives, we make the following contributions:

• We present an abstract interpreter for a concurrent language with futures and atoms that

is able to handle dynamic thread creation. We first formalise a concrete interpreter for

this language using a parallel CESK machine and abstract it using the AAM technique

of Van Horn & Might (2010). This results in the first AAM-based analysis able to analyse

programs containing atoms. We implement our abstract interpreter in the Scala-AM

framework, which is designed to facilitate the construction of abstract interpreters. The

Scala-AM framework has a modular design and consists out of multiple components that

2

1.3. Overview of the Dissertation

can easily be reused.

• We formalise thread interference for the parallel language by means of effects and present

ModAtom, an adaptation of the thread-modular analysis algorithm of Stiévenart (2018)

to make it applicable to our concurrent language with futures and atoms. The effects

generated during the intra-process analysis of a thread are used by the inter-process

analysis to decide on the threads that need to be reanalysed.

• We present IncAtom, a new thread-modular analysis that computes the results for individ-

ual threads incrementally. To this end, we redesign ModAtom and introduce a fine-grained

effect tracking mechanism that tracks the behaviour of individual threads and allows the

intra-process analysis of a thread to be restarted exactly at the point where it may be

influenced by another thread. We present two optimisations that may further reduce the

analysis time of IncAtom.

• We implement our analysis algorithms in the Scala-AM framework. Due to the modular

design of the framework, the comparative evaluation of different abstract interpreters

becomes more trustworthy: since parts of the interpreter can be reused, a change in

performance is solely due to the changes in the parts that have been modified. Hence, this

increases the reliability of comparative studies performed using the framework.

• We present a thorough evaluation of our contributions. We empirically demonstrate the

soundness of IncAtom and compare the behaviour of the analysis to ModAtom using the

analysis time and size of the resulting state graph as metrics; we also evaluate the extent

to which IncAtom is able to reuse previously computed results and asses the proposed

optimisations using several metrics. For our evaluation, we use a set of 28 concurrent,

higher-order benchmark programs. We evaluate the behaviour of IncAtom and compare

its performance to its non-incremental counterpart, ModAtom.

1.3. Overview of the Dissertation

This dissertation is structured as follows. In Chapter 2, we present an introduction to static

analysis. In Section 2.1, first, a general overview of static analysis is given. Thereafter, we discuss

abstract interpretation, the analysis technique used throughout this dissertation, in Section 2.2.

We conclude the chapter by discussing the application of static analyses to concurrent languages

in Section 2.3.

In Chapter 3, we iteratively construct an abstract interpreter for λα, a concurrent language

with atoms. We start from a simple sequential base language, λ0, which is then successively

extended with support for futures and atoms, resulting in λφ and λα respectively. We formalise

these languages using an (abstract) parallel CESK machine and provide, in each step, both

concrete and abstract semantics.

After having presented a non-modular abstract interpreter for λα, we present algorithms to

perform a thread-modular analysis in Chapter 4. To do so, we formalise thread interference

in λα in Section 4.1, obtaining λε. Based on this formalisation, ModAtom, an algorithm for a

thread-modular analysis of λα, is presented in Section 4.2. In Section 4.3, we present IncAtom,

an incrementalised version of ModAtom. Afterwards, we discuss some further possible optimi-

sations in Section 4.4 and present some general remarks in Section 4.5. We conclude by using

the different algorithms to analyse a small example program in Section 4.6, illustrating the

particularities of every algorithm.

The implementation of the abstract interpreter for λα, as well as the algorithms for the thread-

modular analysis, are described in Chapter 5. Our implementation is incorporated into the

3

1. Introduction

Scala-AM framework, which is presented in Section 5.1. Finally, the implementation of the

semantics of λα and of the modular analysis algorithms are explained in Sections 5.2 and 5.3

respectively.

Our implementation is thoroughly evaluated in Chapter 6. In Section 6.1, we first evaluate

soundness of IncAtom, after which we study the algorithm’s behaviour with respect to several

metrics in Section 6.2.

In Chapter 7, we present related work in the different research domains related to this disserta-

tion, such as static analysis for concurrent programs and incremental static program analysis.

Finally, in Chapter 8, we present an overall conclusion and set out possible research directions

for future work.

4

2
I N T RO D U C T I O N TO STAT I C A NA LYS I S

This chapter introduces static analysis. First, a general overview of static analysis is presented

in Section 2.1. Thereafter, in Section 2.2, Abstract Interpretation, the static analysis technique

used throughout this dissertation, is presented. In Section 2.3, it is explained how abstract

interpretation can be applied to concurrent languages as well as how this can be made scalable

using modular analysis techniques.

2.1. Fundamentals of Static Analysis

In this section, the fundamentals of static analysis are introduced. Static analyses are used to

infer behavioural properties of programs without needing to run those programs. Hence, static

analysers are typically used at compile time. An example of a program property that can be

established by means of static analyses is the absence of certain types of defects (bugs). Unlike

testing, which can only prove the presence of certain defects, static analyses can also provide

guarantees about their absence, resulting in strong guarantees about the program’s behaviour.

In general, a static analyser tries to establish whether a program exhibits a certain property. If

this is the case, the analyser will answer yes; otherwise, the analyser will answer no.

Unfortunately, static analysers are limited by a general limitation of Turing machines: any non-

trivial program property is undecidable (Rice, 1953). As a consequence, it is impossible to write

a static analyser that, for any program, can decide whether the program exhibits a certain

property. Therefore, it is important for every static analysis technique to avoid this decidability

problem that arises when analysing a given program for any property it may exhibit.

To resolve this issue regarding decidability, static analysis techniques approximate the actual

solution, that is, the techniques sacrifice some precision to avoid undecidability. As a result of

this loss in precision, a static analyser may encounter situations in which it cannot answer yes

or no anymore as it does not have sufficient information to make a decision. In these cases, the

analysis is inconclusive, that is, the static analyser will have to answer maybe. Clearly, this last

option is often undesirable. However, such cases are unavoidable since the static analyser is

required to run in finite time.

Despite the possibility to answer maybe, often, static analysers are designed to classify programs

for which the analysis is inconclusive either as yes or no. The former option results in an analysis

that may return false positives, i.e., programs that do not exhibit the property looked for may be

5

2. Introduction to Static Analysis

categorised as yes. In this case, the set of programs categorised as yes is an over-approximation of

the set of programs that actually exhibit the selected property: it will contain all programs that

do exhibit the property, but may also contain some other programs that do not. On the other

hand, classifying programs resulting in maybe as no causes the set of programs categorised as

yes to be an under-approximation of the set of programs that actually exhibit the selected property

because the set may not contain all programs exhibiting the property. In this case, the analysis

results may contain false negatives as programs that do exhibit the property looked for may be

categorised as no.

A static analysis technique may be judged according to several characteristics. Four important

characteristics that can be thought of are soundness, completeness, precision and analysis time:

• A static analysis that is sound classifies all programs exhibiting a property correctly, that is,

the analysis will never answer no for a program that does exhibit the property. Soundness

is often important in analyses that are looking for program defects but may also result in

false positives.

• A static analysis that is complete classifies all programs not exhibiting a property correctly,

that is, the analysis will never answer yes for a program that does not exhibit the property.

A complete analysis may result in false negatives, however.

• The precision of an analysis depends on the number of programs it classifies correctly; a

static analyser generating a lot of false positives or false negatives is less precise than an

analyser that misclassifies few programs. Clearly, the results of an imprecise analysis con-

vey less useful information to developers, reducing the usability of the analysis. However,

the precision of an analysis often is hard to quantify.

• The time a static analyser needs to analyse a program not only depends on the program

itself, but also on the analysis technique used by the analyser. Clearly, fast analyses are

preferred. However, the use of some analysis techniques results in a positive correlation

between analysis time and precision, meaning that to shorten the analysis time, precision

may need to be sacrificed.

The above parameters depend on the way a static analysis technique approximates the classifi-

cation of a program. In the remainder of this dissertation, we will focus mostly on analysis time

and precision and require our techniques to be sound, implying the analyses presented in this

dissertation will over-approximate the set of programs exhibiting a property, thus resulting in

the possibility of false positives. A kind of static analyser that can be expected to use such an

over-approximation is a type checker, as illustrated in Example 2.1. It is important to see that a

static analyser can never be sound and complete at the same time since this would imply that it

classifies all programs correctly, a problem which is undecidable.

Example 2.1 Type Checker

A typical example of a static analyser is a type checker, which verifies whether a

program contains type errors (yes) or whether is does not (no).

Since a type checker is a static analyser, an approximation needs to be used to avoid

undecidability. For this reason, the type checker cannot classify all programs correctly.

A sound type checker will never declare an unsafe program safe, i.e., answer no when

the program contains a type error. Therefore, it over-approximates the set of programs

containing type errors, i.e., it will answer yes for all programs containing a type error,

but also for some programs that do not. Conversely, a complete type checker never

6

2.2. Concrete and Abstract Interpretation

declares a safe program unsafe, i.e., it never answers yes when the program is type

safe. Consequently, it under-approximates the set of programs containing a type error

and hence may answer no when the program does contain a type error.

It is clear that normally, a sound type checker, i.e., one that finds all errors, is preferred to

a complete type checker; otherwise, some errors may remain undetected. As a result,

when getting feedback from such a type checker, some programs may be rejected

needlessly. For example, some type checkers may reject perfectly valid code such as (+
1 (if true 2 false)) due to the inequality of the types of both branches of the if
statement.

2.2. Concrete and Abstract Interpretation

The static analysis technique used in this dissertation is Abstract Interpretation (Cousot & Cousot,

1977). Abstract interpretation is related closely to conventional (concrete) interpretation of com-

puter programs. The technique allows to tune the precision of the analysis, although a higher

precision may lead to increased analysis times and vice versa. Because an abstract interpreter

closely resembles a concrete interpreter, programs to be analysed do not need any modification

and no user interaction is required; it is, for example, not needed to instrument the program

with some kind of annotations. In other words, abstract interpretation is a fully automated

technique. Finally, abstract interpretation has already been applied to several important pro-

gramming constructs, such as higher-order functions and concurrency (Might & Van Horn,

2011; Stiévenart et al., 2015; Stiévenart, 2018).

In the remainder of this section, we will first discuss concrete interpretation of a program,

whereafter abstract interpretation is introduced. Next, we present some mathematical notions

relating to abstract interpretation and use them to formalise the concept of an abstraction.

2.2.1. Concrete Interpretation

Consider the execution of a program e by a regular interpreter. During the interpretation of e,
the interpreter will step through the instructions of the program until it reaches a final result,

which is then returned. The steps taken by the interpreter are prescribed by the program’s

semantics. However, the interpreter is not guaranteed to reach a final result; in this case, the

program (and hence the interpreter) will never terminate. In the remainder of this dissertation,

this type of interpretation will be referred to as concrete interpretation.

Concrete interpretation of a program e can formally be described as follows: first, the program

e is injected into an initial state, s0, by means of an injection function. For every non-final state, a

successor state can be determined based on the small-step operational semantics of the program.

Hence, the transition function applies this semantics to a state si to obtain its successor state si+1,

denoted si ↪−→ si+1. By applying this function iteratively starting from the program’s initial state

s0, a trace of the program’s execution is obtained. As the program is not guaranteed to end, the

trace may be infinite. An example of such a trace is depicted in Figure 2.1.

The exact trace generated by the concrete interpreter may depend on user input, for example. As

a result, multiple executions of a single program may lead to different traces being generated. The

7

2. Introduction to Static Analysis

Figure 2.1.: Example of a trace resulting from concrete interpretation.

set of all possible traces of the concrete interpreter for a given program is called the program’s

collecting semantics. This set corresponds to all possible program executions and hence may be

infinite, which is, for example, the case when a program depends on user input.

2.2.2. Abstract Interpretation

The result of a concrete interpretation is a potentially infinite trace of states generated by the

transition function. The trace represents the successive states of the interpreter during the

execution of the program. However, since the trace is not guaranteed to be finite, it is not

suitable for analysis. Also, the states generated by the transition function may depend on (user)

input, which does not suite static analysis well either.

To obtain a decidable analysis, the goal of abstract interpretation is to generate a finite approxi-

mation of a program’s collecting semantics, that is, to compute an approximation of all traces

that may be generated by the concrete interpreter for a specific program. To do so, an abstract

interpreter makes use of an approximation of the program’s semantics, which is obtained by

abstracting the semantics. The abstractions used throughout this dissertation will render all infi-

nite parts of the program’s state space finite. As a result, the abstract interpreter’s state space is

finite and it can only generate a finite amount of states. Hence, a decidable analysis is obtained,

although some precision is lost. The larger the size of the resulting state space, the closer the

abstract interpretation will be to its concrete counterpart and the higher the precision of the

analysis. However, as more states may need to be explored, the analysis time will also increase.

For clarity throughout this dissertation, the following notational convention is used: abstracted

elements, such as functions, sets and states, are denoted with a hat (.̂ . .). For example, if the

injection function is denoted as inject, the abstract injection function will be denoted as înject.

An abstract interpreter and a concrete interpreter work quite alike. Formally, the abstract in-

terpretation of a program e can be described as follows: first, the program e is injected into an

abstract initial state, ŝ0, by means of an abstract injection function. Thereafter, the abstract transition

function uses the abstract semantics of the program to step through abstract states, where every

abstract state is an approximation of one or more concrete states. However, unlike concrete

interpretation, every non-final state can now have one or more successor states due to the loss of

precision.

Rather than ending with a linear, possible infinite, sequence of states, the result of an abstract

interpreter is a graph that is always finite. This finiteness is a result of the approximation of the

semantics that rendered the state space finite. The fact that a graph is obtained also stems from

this approximation as this may introduce uncertainty in the decision making of the abstract

interpreter and since it may also cause back edges to appear. Consider for example the abstract

interpretation of an if statement. If, due to the loss of precision, the abstract interpreter cannot

determine whether the predicate is true or false, it will have to explore both branches. An

example of the resulting graph is depicted in Figure 2.2.

The resulting state graph is called the abstract collecting semantics of the program. When the

analysis is sound, the abstract collecting semantics is an over-approximation of the program’s

8

2.2. Concrete and Abstract Interpretation

Figure 2.2.: Example of a graph resulting from abstract interpretation. Hats indicating abstrac-

tion have been omitted.

concrete collecting semantics, that is, it represents all paths the concrete interpreter may ever

follow but it may also contain paths that are never followed by the concrete interpreter. Based

on this graph, properties of the analysed program can be determined. For example, a dead code

analysis may look for pieces of source code that were never executed by the abstract interpreter

and hence do not appear in the result graph. Since the graph is an over-approximation of the

states that may be reached during the execution of the program, code that does not appear in

the graph can never be executed by a concrete interpreter and hence is deemed dead code.

2.2.3. Mathematical Preliminaries

In the previous section, the concept of approximation by means of abstraction was discussed. In

this section, the mathematical concepts needed to formally define an abstraction are presented.

Definition 1. A partially ordered set is a set S on which a binary relation (v) ⊂ S× S is defined

that is

• reflexive: ∀x ∈ S : x v x,

• anti-symmetric: ∀x, y ∈ S : x v y ∧ y v x ⇒ x = y, and

• transitive: ∀x, y, z ∈ S : x v y ∧ y v z⇒ x v z.

The relation (v) is called a partial order on S. We denote the partially ordered set as (S,v).

Definition 2. An element u ∈ S is an upper bound of X ⊆ S if ∀x ∈ X : x v u. An upper bound u
of X is the least upper bound or supremum of X, denoted

⊔
X, if for every upper bound v of X : u v v.

We define a corresponding binary operator so that

⊔{x, y} can be denoted as x t y, where t is called the

join operator.

Definition 3. An element l ∈ S is a lower bound of X ⊆ S if ∀x ∈ X : l v x. A lower bound l of

X is the greatest lower bound or infimum of X, denoted

d
X, if for every lower bound k of X : k v l.

We define a corresponding binary operator so that

d
{x, y} can be denoted as x u y, where u is called the

meet operator.

Definition 4. A lattice is a partially ordered set L in which every subset of two elements has a supremum

and an infimum. A complete lattice is a partially ordered set L in which every subset has a supremum

and an infimum. Every complete lattice has a bottom element, ⊥, so that ⊥ =
d

L and a top element,

>, so that > =
⊔

L.

Definition 5. A Galois connection between two partially ordered sets (A,vA) and (B,vB) is a pair

of functions (α : A → B, γ : B → A) so that ∀a ∈ A, b ∈ B : α(a) vB b ⇔ a vA γ(b) where α is

called the lower adjoint and γ is called the upper adjoint.

9

2. Introduction to Static Analysis

A partially ordered set (S,v), can be visualised by means of a Hasse diagram in which nodes

represent elements of S and a vertex between s1, s2 ∈ S means that s1 v s2 if s1 is depicted

lower than s2 and s2 v s1 otherwise. To clarify these concepts, Example 2.2 shows two complete

lattices by means of their Hasse diagrams and defines corresponding join and meet operators.

Example 2.2 Complete Lattice

Figure 2.3a shows the Hasse diagram of a partially ordered set of numbers, using

the partial order divides, i.e., a v b if a divides b. The partially ordered set in this figure

also is a complete lattice, where 1 corresponds to the ⊥ element, since 1 can only be

divided by itself but divides all other elements in the set, and 30 corresponds to the >
element, since 30 is divisible by all elements in the set but it only divides itself. For this

lattice, the join operator is defined as the least common multiple and the meet operator

is defined as the greatest common divisor, that is, x t y = lcm(x, y) and x u y = gcd(x, y).

30 = >

6 10 15

2 3 5

1 = ⊥
(a) Hasse diagram of the partially ordered

set ({1, 2, 3, 5, 6, 10, 15, 30}, divides).

{1, 2, 3} = >

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅ = ⊥
(b) Hasse diagram of the partially ordered

set (P({1, 2, 3}),⊆).
Figure 2.3.: Hasse diagrams of different partially ordered sets.

Figure 2.3b depicts the Hasse diagram of the power set P({1, 2, 3}), whose elements

form a partially ordered set of sets with set inclusion ⊆ as the partial order. This

partially ordered set also is a complete lattice, where the empty set ∅ corresponds to

the ⊥ element, since it is a subset of all other sets, and {1, 2, 3} corresponds to the >
element, since it is a superset of all other sets. The join operator for this lattice is set

union ∪ and the meet operator is set intersection ∩. Henceforth, we will refer to this

kind of lattice as a set lattice.

2.2.4. Formalising Abstractions

The relation between concrete and abstract interpretation can be seen as follows: concrete

interpretation works on a domain of values whereas abstract interpretation works on a domain

of abstract values. Whereas the domain of concrete values typically is infinite, the domain of

abstract values typically is finite.

Definition 6. An abstraction relating a possibly infinite set of values V and a finite set of abstract

10

2.2. Concrete and Abstract Interpretation

values V̂ is a Galois connection between the two complete lattices, (P(V),⊆) and (V̂,v), where the

lower adjoint α : P(V)→ V̂ is called the abstraction function or the abstraction map and the upper

adjoint γ : V̂ → P(V) is called the concretisation function.

Intuitively, the above definition means that both the abstraction and concretisation function

preserve the partial ordering of elements. In some cases where the concretisation function is

of no use, the concretisation function can be omitted and the abstraction is solely defined by

means of the abstraction function.

Since an abstract interpreter works on abstract values, the operations it applies to these values

also need to be abstracted. Furthermore, other components of the state space need may to be

abstracted as well. Examples of such abstracted components that we have previously mentioned

are the abstract injection function, the abstract transition function and abstract states.

Example 2.3 shows a possible abstraction for the set of integers, Z, and illustrates how informa-

tion can be lost by performing operations on abstract numbers. In general, the lower an element

sits in the partial order of the lattice, the more information it conveys to the abstract interpreter,

that is, the bottom element conveys the most information and the top element conveys the least

information. Normally, bottom represents a kind of inconsistency and any abstract operation

performed on bottom will return bottom. For example, in the sign lattice presented in Example

2.3, bottom represents not a number whereas top represents any number. Hence, the choice of

the abstraction map directly influences the precision of the analysis.

Example 2.3 Sign Abstraction

An example abstraction is the sign abstraction by which the infinite set of integers,

Z, is abstracted into a finite set of signs. More specifically, the abstraction is a Galois

connection between the two complete lattices (P(Z),⊆) and ({+,−, 0̂,>,⊥},vsign),
where vsign is depicted in Figure 2.4. Henceforth, the latter will be referred to as the

sign lattice.

>

− 0̂ +

⊥
Figure 2.4.: Hasse diagram of the sign lattice.

Intuitively, the sign abstraction can be thought of as follows: an integer can be consid-

ered as a combination of a sign and an absolute value. The sign abstraction approxi-

mates this integer by abstracting away the absolute value, only keeping the sign of the

number. Hence, the abstraction and concretisation functions can be defined as follows:

11

2. Introduction to Static Analysis

α : P(Z)→ {+,−, 0̂,>,⊥}

α(Z) =



+ if Z ⊆ Z+
0

− if Z ⊆ Z−0
0̂ if Z = {0}
⊥ if Z = ∅
> otherwise

γ : {+,−, 0̂,>,⊥} → P(Z)

γ(S) =



Z+
if S = +

Z− if S = −
{0} if S = 0̂
∅ if S = ⊥
Z otherwise

It is clear that regular functions cannot work on the abstract values {+,−, 0̂,>,⊥}. It

is therefore required to abstract the operations on integers too, making them operate

on abstract values. The abstract increment operator înc can be defined as follows:

înc(S) =


+ if S = + ∨ S = 0̂
⊥ if S = ⊥
> otherwise

This definition illustrates how precision can be lost by performing operations on ab-

stract numbers. For example, înc(−) returns >, representing a number that can have

any sign. The reason for this is that − does not convey enough information to decide

whether 0̂ or − should be returned.

Key to the development of an abstract interpreter is to construct the abstraction in such a

way that the operations on the abstract domain return some information with regard to the

operations on the concrete domain, that is, the abstraction needs to be sound: the abstract value

obtained in the abstract domain should always be an over-approximation of the concrete value

that would be obtained in the corresponding concrete domain, i.e.,

α(f (v)) v f̂ (v̂)

where f̂ is the abstract counterpart of f and v̂ = α(v). If we now take the function f to be the

transition function, we obtain the definition of a sound analysis (Van Horn & Might, 2010):

Definition 7. Let ς denote a state reachable by the concrete interpreter, ↪−→ the concrete transition

function and Σ̂ the set of abstract states generated by the abstract interpreter. An analysis is sound if

from ς ↪−→ ς′ and α(ς) v ς̂, it follows that ∃ς̂′ ∈ Σ̂ so that ς̂ ↪̂−→ ς̂′ and α(ς′) v ς̂′.

Intuitively, this definition states that an analysis is sound if the finite set of abstract states

generated by the abstract interpreter is an over-approximation of the (possibly infinite) set of

concrete states that may be generated by the concrete interpreter. The bigger the size of the

abstract domain, the more precision can be retained due to the increased size of the abstract

interpreter’s state space.

2.3. Static Analysis for Concurrent Languages

In Section 2.2.2, we have already discussed how an abstract interpreter generates a state graph

that over-approximates the behaviour of a program. Every state in the resulting graph over-

approximates one or more concrete states the concrete interpreter may reach. So far, we only

12

2.3. Static Analysis for Concurrent Languages

discussed abstract interpretation for sequential programs. However, abstract interpretation,

and static analysis in general, can also be applied to concurrent programs. By abstracting

the semantics of a concurrent language, an abstract interpreter supporting that concurrent

language can also be built. In this section, we first discuss how an abstract interpreter may

analyse a multithreaded program. Then, we present modular static program analysis as a

method to improve the time complexity of analyses for concurrent languages (Stiévenart et al.,

2015; Stiévenart et al., 2019).

2.3.1. Non-Modular Static Analysis for Concurrent Languages

The execution of a multithreaded program typically is nondeterministic. This nondeterminism

stems from the fact that threads work concurrently. However, variables and objects may be

shared among multiple threads. Moreover, these shared variables and objects may also be

mutated by the concurrent threads. The order in which these objects are manipulated by the

threads may not only influence the values of these shared objects, but also the control flow

within the threads themselves. Example 2.4 depicts a program that illustrates this case.

Example 2.4 Multithreaded Programming

In Listing 2.1, a multithreaded program is shown. Two variables, x and y, are defined

and are shared among two threads, thread1 and thread2.

(define x 0) ;; x and y are shared variables.
(define y 0)
(let ((thread1 (spawn (set! x 1) ; (1)

(sleep 30)
(set! x 0))) ; (2)

(thread2 (spawn (if (= x 1) ; (3)
(set! y 2)
(set! y -1)))))

(join thread1) ;; Blocking call.
(join thread2)
(display y))

Listing 2.1: Example of a multithreaded program with shared variables.

The value of y after the execution of the program depends on the execution order of

the threads: only when the value of the variable x in (3) is read after the execution

of (1) but prior to the execution of (2), the value of y will be 2; all other thread

interleavings result in -1 being final value of y. Hence, this example illustrates how

the scheduling of the threads may influence the control flow of thread2. Situations in

which the order in which the threads perform the operations is important for the final

result of the program are called race conditions and are generally unintended. However,

race conditions may be very hard to detect since bugs may only arise during some

executions of the program. Nevertheless, a static analyser for concurrent languages

can be used to detect the presence of race conditions or to guarantee their absence.

A static analyser for concurrent languages has to take the states of the different threads into

account. Hence, every state the concrete interpreter may be in is over-approximated by an

13

2. Introduction to Static Analysis

abstract state in the state graph produced by the static analyser, where an abstract state takes

the evaluation state of all threads into account. Moreover, since the analyser needs to produce

a sound result, the state graph it produces must be an over-approximation of all the possible

states the concrete interpreter executing the multithreaded program may be in. This means

that the analyser must account for all possible thread interleavings in the concurrent program.

Otherwise, it may fail to produce a sound result since the produced state graph may not be a

correct over-approximation. It is important to note that, for abstract interpretation, threads are

abstracted as well. This is needed to keep the set of states the abstract interpreter can generate

finite. In this light, the set of thread identifiers should be finite as well, since programs may

spawn an arbitrary, and hence possibly infinite, number of threads.

The fact that a static analyser needs to account for all possible thread interleavings is problematic

since the abstract interpreter may need to generate a state over-approximating every possible

state the concrete interpreter may be in, that is, for every possible thread interleaving. This

results in the state explosion problem: the number of possible thread interleavings, and hence

the number of states that may need to be generated by the abstract interpreter, is subject to a

combinatorial explosion. Suppose for example a program consisting out of two threads, where

one thread has to execute m instructions and the other has to execute n instructions. In this

case, the number of possible interleavings equals

(
m + n

m

)
=

(m + n)!
m! · n!

. An example of a state

explosion in the analysis of a program with two threads is depicted in Figure 2.5. A new thread

is created in state s1.0, which is later again joined into the main thread in state s4.3. Between

these two states, a state explosion occurs: the order in which both threads take a step is non-

deterministic, and hence every possibility gives rise to a different path in the graph. Since each

thread has to take three steps, in total, there are

(
3 + 3

3

)
= 20 possible interleavings the static

analyser must consider. In practice, often less states will need to be generated since different

thread interleavings not always lead to different interpreter states. This is for example the case

when there is no interference between the different threads, or when this interference does not

lead to multiple different abstract states. For example, in Figure 2.5, all paths again converge

into a single abstract state, s4.3.

Figure 2.5.: Example analysis of a multithreaded program in which all interleavings must be

accounted for. Abstract state sm.n indicates that the abstract blue thread has taken

m steps and the abstract orange thread has taken n steps. Again, the hats indicating

abstraction have been omitted.

The state explosion an abstract interpreter may suffer immediately impacts the analysis time

needed by the analyser: due to the large number of states that may need to be generated, the

abstract interpreter may need more time to complete the entire analysis. Also, the analysis

may require a considerable amount of memory. Therefore, it is clear that analysing concurrent

programs using this technique does not scale to large programs or to programs creating a large

number of threads.

14

2.3. Static Analysis for Concurrent Languages

2.3.2. Thread-Modular Static Analysis for Concurrent Languages

In Section 2.2, we have presented abstract interpretation as a technique to perform static analyses.

It is clear that the size of the program under analysis will have an impact on the time the analysis

needs to complete, as well as on the static analyser’s memory requirements. For large programs,

the time and memory needed by an analyser may become obstructive. Often, the time needed

by the analysis can be decreased by lowering its precision, but as a result, this may also lower

the analysis’ usability. This issue is especially pressing for the analysis of concurrent languages

as a result of the state explosion problem discussed earlier. To remedy this problem, several

solutions have been introduced to decrease the size of the abstract interpreter’s state space:

• Partial-order reduction techniques are based on the observation that the order of some

evaluation steps in a concurrent program is irrelevant, i.e., that multiple orderings yield the

same result. In fact, this is often the case for concurrent programs, meaning that multiple

interleavings yield the same result; these interleavings are said to be equivalent. Partial-

order reduction techniques only explore one of the equivalent thread interleavings instead

of all of them. Hence, given a property, partial-order methods only explore a reduced part

of the state space that is sufficient for checking the given property (Godefroid, 1995).

• Static analyses using the technique of macro stepping, introduced by Agha et al. (1997),

analyse each process until completion or to the point where a potentially interfering

operation has been performed (Stiévenart, 2018). Since the analysis of a thread may take

multiple steps at once, i.e., perform a macro step, only the interleavings of these macro

steps must be explored by the analysis. As a result, less interleavings must be explored by

the analysis.

• A modular analysis divides a program into components which are analysed in isolation.

Because the components are small, they can be analysed using a high precision while

maintaining low analysis times for the components. However, since the analyses of the

different components may be interdependent, the analysis of one component may trigger

the reanalysis of other components (Cousot & Cousot, 2002).

Partial-order reduction techniques and macro-stepping do not alter the worst case time com-

plexity of the analysis. On the other hand, this complexity is reduced when using the technique

of modular analysis, which is used throughout this dissertation.

Improving Scalability through Modularity

The general idea behind a modular analysis, as presented by Cousot & Cousot (2002), is based

on their observation that the semantics of a program can be obtained compositionally from

the semantics of its parts (components), such as functions, classes, methods, source files,. . . A

modular analysis therefore analyses the different components of a program independently of

one another, resulting in partial analysis results. Since the different parts are generally small,

the analysis of the program parts can be done using a high precision and since the analyses

are performed in separation, they can be performed simultaneously. The analysis result of the

entire program can then be obtained by combining the results of its different parts.

The analysis just described is actually called a compositional analysis, since the analysis result for

the entire program can just be obtained by composing the results of the analyses of the different

parts of the program. In general however, it is difficult for a compositional analysis to produce

results that are precise since the different components of a program may be interdependent,

that is, the analysis of one component may depend on the analysis result of another. Consider

15

2. Introduction to Static Analysis

for example the case where components are functions. The way a function is called may have

an influence on the result it produces and hence on the result of its analysis, which therefore

depends on how this function is called in the body of other functions. Hence, the result of the

analysis of the function depends on results of the analyses of the calling functions. To account

for these dependencies between the different parts of a program, a modular analysis tracks these

dependencies. Whenever a new dependency is found or an existing dependency is updated, the

modular analysis reanalyses the affected parts, possibly updating their results and triggering

reanalysis of other program parts.

Thread-Modular Analyses for Concurrency

The concept of modular static analysis just presented provides a solution to the state explosion

problem that was discussed in Section 2.3.1. Instead of letting the abstract interpreter explore

all possible thread interleavings one by one, a thread-modular static analysis analyses the different

threads in a program in isolation (Flanagan et al., 2002; Stiévenart, 2018). However, a thread

may have effects on the environment it works in. For example, it may mutate shared variables,

spawn new threads and read the return value of other threads. These effects need to be tracked

as they create dependencies between the different threads. Consider again thread2 in Example

2.4, which reads the value of variable x. Since thread1 modifies x, the modular analysis will

construct a dependency between the two threads. If this dependency would not be tracked,

thread2 would not be aware that the value of x is altered by another thread and the analysis

would never consider the branch in which y is set to 2. Hence, a modular analysis avoids having

to explicitly take into account all possible thread interleavings by tracking the dependencies

between threads and by reanalysing threads when necessary.

Instead of producing one graph for the entire program, the result of a thread-modular analysis

is a collection of graphs, one for each thread. Figure 2.2 graphically depicts how the result of a

modular analysis may look. In grey, the dependencies between the two threads are marked. In

state s1a, process A forks a new thread of which it later reads the return value in state s5a. Both

threads share a variable x, which is mutated by process A in state s2a and read by process B in

state s2b. Hence, the change of the value of xmay cause process B to be reanalysed. Conversely,

the change of the return value of process B may cause process A to be reanalysed. The analysis

continues until a fixed point is reached, which is guaranteed to happen due to the finite state

space in which the abstract interpreter is operating.

Figure 2.6.: Example of a modular analysis result. The grey arrows denote inter-thread depen-

dencies.

2.4. Conclusion

In this chapter, we have presented static analysis, a technique to infer program properties at

compile time. We have discussed important characteristics of a static analyser, such as soundness,

16

2.4. Conclusion

precision and analysis time. We find that soundness is a crucial property and hence, we will

require the static analyses presented in the remainder of this dissertation to be sound. The

static analysis technique that is used throughout this dissertation is abstract interpretation,

which works similarly to concrete interpretation but uses an approximation of a program’s

semantics. The abstract interpretation of a program results in an abstract state graph, a finite

graph over-approximating the program’s concrete collecting semantics; the approximation of

program semantics relies on the mathematical concept of lattices, with set theory at its core.

When applying abstract interpretation to concurrent programs naively, the abstract interpreter

falls subject to the state explosion problem as it must explicitly take all possible thread inter-

leavings into account. This poses a burden on the scalability of the analysis. To avoid this issue,

the concept of a thread-modular analysis, which is used throughout this dissertation, was in-

troduced by Flanagan et al. (2002). A thread-modular analysis analyses the different threads of

a program in isolation, thereby avoiding the need to explicitly account for all possible thread

interleavings. Instead, the analysis must track the dependencies between the different threads

to account for thread interference and reanalyse threads when necessary.

17

3
TOWA R D S A N A B ST R AC T I N T E R P R E T E R FO R λα , A CO NC U R R E N T

L A NG UAG E W I T H ATO M S

In this chapter, we first formalise λ0, a simple sequential language, which is then extended two

times successively. Each language is systematically introduced by the presentation of its syntax

and semantics; our formalisation is based on the notational conventions of Stiévenart (2018).

The semantics of the languages are presented using a (P)CESK machine, after which they are

abstracted to obtain a formal description of an abstract interpreter. The first language, λ0, is

a simple sequential language based on the call-by-value lambda calculus. In a first extension,

parallelism is enabled by the addition of futures, resulting in λφ. Finally, we present λα, a further

extension of λφ obtained by the addition of atoms. Futures and atoms are already present several

in modern-day languages. For this reason, the syntax and semantics presented in this chapter

are based on the syntax and semantics of futures and atoms in Clojure.

3.1. λ0, a Sequential Base Language

In this section, we present a simple sequential language, λ0, that is based on the call-by-value

lambda calculus. The language has been enriched with a letrec expression that can be used for

variable binding. First, the syntax of λ0 is presented, followed by its concrete semantics. Finally,

we show how this semantics is abstracted, obtaining a formalisation of an abstract interpreter

for λ0.

3.1.1. Syntax

Figure 3.1 depicts the syntax of λ0. An expression of the language is either an atomic expression, a

function application or a letrec for variable binding. An atomic expression is either a variable

reference or a lambda expression consisting out of a single parameter and a body. Finally, every

program may contain a set of variable names, which is guaranteed to be finite due to the finite

length of the program.

For simplicity, the presented formalisation assumes all functions are unary. This restriction

does not limit the expressive power of the language in any way and the formalisation can be

generalised easily to functions with an arbitrary number of arguments. For example, a nullary

function can be written in λ0 as a unary function that ignores its argument and a function of

19

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

multiple arguments can be curried, that is, written as a sequence of nested unary functions. The

same is true for letrec, where only one binding is assumed.

λ0
e ∈ Exp ::=

ae

| (e e)
| (letrec ((x e)) e)

ae ∈ AExp ::=
x

| lam
lam ∈ Lam ::=

(lambda (x) e)
x ∈ Var A finite set of identifiers.

Expressions

Atomic expression

Function application

Bindings

Atomic Expressions

Variable

Lambda

Lambdas

Lambda

Variables

Figure 3.1.: Syntax of λ0, a simple sequential language.

3.1.2. Concrete Semantics

The semantics of λ0 is formalised by means of a CESK machine, an abstract machine similar to

automata used to formalise concrete interpretation. A CESK machine can be described through

the following four components:

• The state space of the machine describes the (possibly infinite) set of states the machine

can generate;

• The injection function of the machine defines how an expression is converted to an initial

state;

• The transition function defines how to step through the evaluation of an expression, that

is, it defines the successor state(s) of a given state;

• The evaluation function defines the set of states that is reachable from an initial expres-

sion.

In the remainder of this section, a CESK machine for λ0 is presented. This abstract machine

formally describes a concrete interpreter for λ0.

State Space

Figure 3.2 depicts the state space of the CESK machine for λ0. A state ς contains all information

needed to guide the evaluation of the program and consists out of two components:

• The control component c of a state contains the expression currently being evaluated

by the machine coupled together with the environment in which this expression is to be

evaluated, or it contains the value that was reached after an expression was fully evaluated.

An environment ρ maps variable names to value addresses a.

• The continuation address k is the address of the current continuation in the continuation

store Ξ, which maps continuation addresses to continuation frames. These continuation

frames help the machine to keep track of its progress in the evaluation of a program.

20

3.1. λ0, a Sequential Base Language

Apart from a state, the transition function uses two auxiliary structures during evaluation:

• The value store σ maps value addresses a to values v. Henceforth, we may refer to the

value store just as store and to value addresses just as addresses.

• The continuation store Ξ models the stack of the machine; it maps continuation addresses

k to continuation frames φ, where each frame contains the continuation address of the

next frame on the stack.

In the remaining part of this dissertation, we use the term the stores to refer to the ensemble of a

value store and a continuation store.

λ0
ς ∈ Σ = Control× KAddr

c ∈ Control ::=
ev(e, ρ)

| val(v)
v ∈ Val ::=

clo(lam, ρ)

ρ ∈ Env = Var→ Addr
σ ∈ Store = Addr→ Val

Ξ ∈ KStore = KAddr→ Frame
φ ∈ Frame ::=

halt
| fun(e, ρ, k)
| arg(v, k)
| bnd(x, e, ρ, k)

a ∈ Addr A set of addresses for values.

k ∈ KAddr A set of addresses for continuations.

States

Control

Expression evaluation

Reached value

Values

Closure

Environments

Value Stores

Continuation Stores

Continuation frames

Halt continuation

Operator continuation

Operand continuation

letrec continuation

Value Addresses

Continuation Addresses

Figure 3.2.: State space for λ0.

Note that our formalisation slightly diverges from the conventional CESK machine as introduced

by Felleisen & Friedman (1987), but this will prove beneficial later on. An important difference

is that the current continuation is not part of a state directly, but that a separate continuation

store is used to map continuation addresses to continuation frames, as proposed by Johnson

& Van Horn (2014). Although it is possible to use one unified store, mapping addresses to

both values and continuation frames, the use of a separate continuation store will simplify the

abstraction of the semantics. It is also possible to include a timestamp in the machine states,

which can improve the precision of an analysis by introducing context sensitivity (Van Horn &

Might, 2012). However, this does not fall into the scope of this dissertation, for which we will

omit timestamps in the presented formalisations.

As a final remark, it is important to mention that a state does not contain a (continuation) store

itself. The stores are passed to the transition function separately. This will prove useful later for

the formalisation of concurrent languages.

21

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

Injection Function

To evaluate an expression using a CESK machine, the expression first needs to be injected into

an initial machine state, to which the transition function can be applied. The injection function

inject : Exp→ Σ for λ0 is defined as follows:

inject(e) = 〈ev(e, []), k0〉

where k0 is a special continuation address reserved for the halt continuation (see Figure 3.2)

and [] denotes an empty environment. When the machine is given this state, it will evaluate the

program e in an initial empty environment [], that is, in an environment in which no variables

are bound. The halt continuation indicates end of evaluation to the CESK machine: when the

machine reaches a state with a value in its control component and the halt continuation on the

top of its stack, the evaluation has been completed and the value in the control component of

the machine is the return value of the evaluation. In this case, no further transition rules are

applicable and the machine halts.

Transition Function

In the syntax of λ0, a distinction is made between atomic expressions and regular, complex,

expressions. An expression is said to be atomic if it can be evaluated atomically, that is, if

it can be evaluated in a finite amount of time, without needing to modify the value store

or continuation store of the machine. An expression is said to be complex if it is not atomic.

Before defining the transition function, first, a specific evaluation relation is presented, defining

evaluation rules for atomic expressions.

Figure 3.3 defines the atomic evaluation function for λ0. The atomic evaluation function is

denoted as ⇓, where ρ, σ ` ae ⇓ v means that the atomic expression ae evaluates to the value

v in environment ρ and using store σ. Variables are evaluated by looking up their value in the

store using the address stored in the environment. The atomic evaluation of a lambda results in

a closure, which couples the lambda together with its lexical environment.

λ0

σ(ρ(x)) = v
ρ, σ ` x ⇓ v

var

ρ, σ ` lam ⇓ clo(lam, ρ)
lambda

Figure 3.3.: Atomic evaluation rules for λ0.

The transition function for λ0 makes use of two auxiliary functions:

alloc : Var× Store→ Addr
kalloc : Exp× Env× Store× KStore→ KAddr

These two functions are used to allocate addresses in the value store and continuation store

respectively. In the concrete case, the number of addresses may be infinite and as a result,

(continuation) addresses can be represented by means of integers. In this case, a new address

is generated by looking at the number of existing addresses, that is, the size of the domain of

22

3.1. λ0, a Sequential Base Language

the respective store; this allocation scheme results in a fresh address for every allocation. Figure

3.4 shows the structure of (continuation) addresses in λ0, as well as definitions for the concrete

allocation functions.

λ0
Addr = N

KAddr = N

alloc(x, σ) = | dom(σ) |
kalloc(e, ρ, σ, Ξ) = | dom(Ξ) |

Value Addresses

Continuation Addresses

Address Allocation

Continuation Address Allocation

Figure 3.4.: Addresses for λ0.

Given the definition of the atomic evaluation function and the address allocation functions, the

transition function ↪−→: Σ× Store× KStore → Σ× Store× KStore for λ0, depicted in Figure 3.5,

can be described as follows:

• Rule atomic-evaluation connects the atomic evaluation function to the transition function;

it states that if the expression to evaluate is an atomic expression, the atomic evaluation

rules apply.

• Rules appl-operator, appl-operand and appl-body stipulate how a function application is

evaluated. To apply an operator e f to an operand ea in the call-by-value lambda calculus,

three steps are required.

1. First, rule appl-operator applies, which causes the operator e f to be evaluated. It

pushes a new frame on the stack, containing the argument expression ea to be evalu-

ated later on. To push a frame on the stack, a new continuation address k′ is generated

using kalloc, which is then used to extend the continuation store Ξ.

2. After the operator has been evaluated, rule appl-operand applies. This rule pops

the topmost frame of the stack by looking up the current continuation address k in

the continuation store. This frame contains the operand expression ea which is to

be evaluated next. A new frame φ containing the value of the operator v f , resulting

from prior evaluation, is pushed onto the stack.

3. Finally, when the operand has been evaluated to a value va, rule appl-body applies.

It pops the topmost frame of the stack to get the value of the operator v f and gets

the value of the operand va as the result from prior evaluation. It then extends the

environment ρ with a new binding for the formal argument x of the function, to a

newly allocated value address a, which is generated by means of alloc. This address

is then used to extend the value store with a new binding from the address to the

value of the operand.

• Rules letrec-binding and letrec-body define how a letrec is evaluated. Evaluation of a

letrec resembles function evaluation, where the evaluation of the binding can be related

to the evaluation of the operand.

The premise v f = clo(lam, ρ) of rule appl-body avoids the rule being applied when the function

operand does not evaluate to a function. In case no transition rule applies and the machine has

not reached a value while having the halt continuation on top of its stack, the evaluation of the

expression is said to be stuck. This indicates the expression under evaluation does not comply

with the semantics of λ0, that is, it contains an error.

23

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

λ0

ρ, σ ` ae ⇓ v
〈ev(ae, ρ), k〉, σ, Ξ ↪−→ 〈val(v), k〉, σ, Ξ

atomic-evaluation

φ = fun(ea, ρ, k) k′ = kalloc(e f , ρ, σ, Ξ)

〈ev((e f ea), ρ), k〉, σ, Ξ ↪−→ 〈ev(e f , ρ), k′〉, σ, Ξ[k′ 7→ φ]
appl-operator

Ξ(k) = fun(ea, ρ, k′) φ = arg(v f , k′) k′′ = kalloc(ea, ρ, σ, Ξ)

〈val(v f), k〉, σ, Ξ ↪−→ 〈ev(ea, ρ), k′′〉, σ, Ξ[k′′ 7→ φ]
appl-operand

Ξ(k) = arg(v f , k′) v f = clo(lam, ρ) lam = (λ(x) e) a = alloc(va, σ)

〈val(va), k〉, σ, Ξ ↪−→ 〈ev(e, ρ[x 7→ a]), k′〉, σ[a 7→ va], Ξ
appl-body

φ = bnd(x, eb, ρ, k′) k′ = kalloc(ex, ρ, σ, Ξ)
〈ev((letrec ((x ex)) eb), ρ), k〉 ↪−→ 〈ev(ex, ρ), k′〉, σ, Ξ[k′ 7→ φ]

letrec-binding

Ξ(k) = bnd(x, eb, ρ, k′) a = alloc(vx, σ)

〈val(vx), k〉, σ, Ξ ↪−→ 〈ev(eb, ρ[x 7→ a]), k′〉, σ[a 7→ vx], Ξ
letrec-body

Figure 3.5.: Transition rules for λ0.

The use of the concrete transition rules for λ0 for the evaluation of a program is illustrated in

Example 3.1.

Example 3.1 Concrete evaluation in λ0

After an expression is injected into an initial state, it is evaluated by successive ap-

plications of λ0’s concrete transition function. Figure 3.6 illustrates the evaluation of

the expression ((lambda (x) (x x))(lambda (y) (y y))), starting from an initial

state that is obtained by applying the injection function to the expression. However,

the evaluation of this particular expression will never terminate, as is always possible

when evaluatin ga program concretely (see Section 2.2.1).

〈ev(((lambda (x) (x x))(lambda (y) (y y))), [], k0)〉,
[], [k0 7→ halt]

appl-operator

↪−−−−−−−→ 〈ev((lambda (x) (x x)), []), k1〉,
[], [k0 7→ halt, k1 7→ fun((lambda (y) (y y)), [], k0)]

atomic-evaluation

↪−−−−−−−−−→ 〈val(clo((lambda (x) (x x)), [])), k1〉,
[], [k0 7→ halt, k1 7→ fun((lambda (y) (y y)), [], k0)]

appl-operand

↪−−−−−−−→ 〈ev((lambda (y) (y y)), []), k2〉,
[], [k0 7→ halt, k1 7→ . . . , k2 7→ arg(clo((lambda (x) (x x))[]), k0)]

atomic-evaluation

↪−−−−−−−−−→ 〈val(clo((lambda (y) (y y)), [])), k2〉,
[], [k0 7→ halt, k1 7→ . . . , k2 7→ arg(clo((lambda (x) (x x))[]), k0)]

24

3.1. λ0, a Sequential Base Language

appl-body

↪−−−−−→ 〈ev((x x), [x 7→ a1]), k0〉,
[a1 7→ clo((lambda (y) (y y)), [])], [k0 7→ halt, k1 7→ . . . , k2 7→ . . .]

appl-operator

↪−−−−−−−→ 〈ev(x, [x 7→ a1]), k3〉,
[a1 7→ clo((lambda (y) (y y)), [])], [k0 7→ halt, k1 7→ . . . , k2 7→ . . . ,
k3 7→ fun(x, [x 7→ a1], k0)]

atomic-evaluation

↪−−−−−−−−−→ 〈val(clo((lambda (y) (y y)), [])), k3〉,
[a1 7→ clo((lambda (y) (y y)), [])], [k0 7→ halt, k1 7→ . . . , k2 7→ . . . ,
k3 7→ fun(x, [x 7→ a1], k0)]

appl-operand

↪−−−−−−−→ 〈ev(x, [x 7→ a1]), k4〉,
[a1 7→ clo((lambda (y) (y y)), [])], [k0 7→ halt, k1 7→ . . . , k2 7→ . . . ,
k3 7→ . . . , k4 7→ arg(clo((lambda (y) (y y)), []), k0)]

atomic-evaluation

↪−−−−−−−−−→ 〈val(clo((lambda (y) (y y)), [])), k4〉,
[a1 7→ clo((lambda (y) (y y)), [])], [k0 7→ halt, k1 7→ . . . , k2 7→ . . . ,
k3 7→ . . . , k4 7→ arg(clo((lambda (y) (y y)), []), k0)]

appl-body

↪−−−−−→ 〈ev((y y), [y 7→ a2]), k0〉,
[a1 7→ . . . , a2 7→ clo((lambda (y) (y y)), [])], [k0 7→ halt, k1 7→ . . . ,
k2 7→ . . . , k3 7→ . . . , k4 7→ . . .]

ad infinitum

↪−−−−−→ . . .

Figure 3.6.: Evaluation of a non-terminating program.

Evaluation Function

The evaluation function eval : Exp → P(Σ× Store× KStore) defines the set of states the CESK

machine can reach during the evaluation of an expression. It is defined as follows:

eval(e) = {〈ς, σ, Ξ〉 | inject(e), [], [k0 7→ halt] ↪−→∗ ς, σ, Ξ}

with [] denoting the empty store.

Formally, this definition defines the set eval(e) as the set of states that can be reached by zero

or more steps of the transition function when starting from an initial empty value store and

a continuation store in which only the halt continuation is mapped to. This function is useful

since static analysis is concerned with the evaluative behaviour of the program e rather than with

its return value.

The set eval(e) is called the (concrete) collecting semantics of e and may be infinite, which makes

it unsuitable for static analysis since deciding set membership is undecidable. Therefore, the

semantics of λ0 is abstracted, transforming the formalisation of a concrete interpreter into

the formalisation of an abstract interpreter that can be used to obtain a sound and decidable

approximation of eval(e).

25

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

3.1.3. Intermezzo: Administrative Normal Form (ANF)

In the language described so far, a distinction was made between atomic expressions and complex

expressions; the first type of expressions was defined as expressions that can be evaluated to

a value in finite time, without needing to modify the value or continuation store. On the other

hand, evaluating the second type of expressions may require an infinite amount of time as

multiple subexpressions must be evaluated. Examples of complex expressions are function

applications, in which an operator, an operand and a body must be evaluated.

In Administrative Normal Form (ANF), all subexpressions of a function application, i.e., both

the operator and the operand, must be atomic expressions. Only subexpressions that are in

tail position are allowed to be non-atomic (Flanagan et al., 1993). ANF was introduced as an

intermediate representation for compilers, being an alternative to Continuation Passing Style

(CPS). ANF simplifies the definition of the semantics of the language, as it avoids the need of

writing explicitly evaluation rules for the operator and operand, such as appl-operator and

appl-operand in Figure 3.5. Since every program can be converted to ANF without losing

expressiveness, in future extensions to λ0, the program is assumed to be written in or converted

to ANF.

The conversion of a program to ANF requires the presence of a let-like construct for binding

variables to the evaluation result of non-atomic expressions (in λ0, this is the letrec construct).

To convert an expression to ANF, all non-atomic subexpressions that are not in tail-position

must become let-bound. Example 3.2 shows how an expression can be converted to ANF.

Example 3.2 Conversion to Administrative Normal Form

Consider the program in Listing 3.1. The function sum calculates the sum of all in-

tegers up to n. It keeps an accumulator res, which is returned when n reaches zero.

Since λ0 only supports functions with one argument, the function sum is curried, i.e.,

it is written as a sequence of nested unary functions. (In this example, it is assumed

that λ0 also has boolean values and an if-expression that behave as expected.)

The code in Listing 3.1 is not in ANF since, at several locations in the code, non-atomic

expressions occur as a subexpression. For example, in the initial call to sum, (sum 10)
is a non-atomic expression appearing at the operator position of the call ((sum 10)
0). Likewise, the operands in the recursive call of sum are non-atomic expressions.

1 (letrec ((sum (lambda (n)
2 (lambda (res)
3 (if (= n 0)
4 res
5 ((sum (- n 1))
6 (+ res n)))))))
7 ((sum 10) 0))

Listing 3.1: Example of program that is not in ANF.

To convert the code in Listing 3.1 to ANF, all non-atomic expressions not appearing

in tail position must become bound by a letrec. In the code, these expressions are

marked in red. Listing 3.2 shows the ANF conversion of the code. Note that although

26

3.1. λ0, a Sequential Base Language

the calls to fn are not atomic expressions, they are in tail position, which is allowed

in ANF (lines 9 and 11). Also, to convert (sum (- n 1)) to an atomic expression, two

subsequent bindings are needed since (- n 1) is a complex expression as well, and

hence is not allowed as a direct argument to sum.

1 (letrec ((sum (lambda (n)
2 (lambda (res)
3 (letrec ((bool (= n 0)))
4 (if bool
5 res
6 (letrec ((m (- n 1)))
7 (letrec ((fn (sum m)))
8 (letrec ((res2 (+ res n)))
9 (fn res2))))))))))

10 (letrec ((fn (sum 10)))
11 (fn 0)))

Listing 3.2: ANF conversion of the program in Listing 3.1.

3.1.4. Abstract Semantics

To obtain the abstract semantics of λ0, we follow the approach presented by Van Horn &

Might (2010, 2012), called Abstracting Abstract Machines (AAM). This is a systematic approach

to abstracting CESK machines, thereby obtaining a formalisation of an abstract interpreter.

The approach consists out of several refactorings followed by an abstraction step. Using this

approach, a deterministic CESK machine with a possibly infinite state space is transformed

into a nondeterministic abstract CESK machine, denoted as ĈESK, with a finite state space.

The name of the approach, AAM, originates from the fact that the CESK machine, which is an

abstract machine, is abstracted, resulting in an abstract abstract machine.

The concrete semantics of λ0 presented so far already includes the refactorings described

by Van Horn & Might (2012). Therefore, the CESK machine of Section 3.1.2 can readily be

abstracted. Key to seeing how this machine can be abstracted is noticing that there are no

(mutually) recursive structures in the state space of λ0: although the state space contains two

structures that normally are inherently recursive, environments and continuation frames, we

have purposely broken their recursive structure. The recursive structure of environments has

been broken by the introduction of the value store as this avoids environments and closures

being mutually recursive. The recursive structure of continuation frames has been broken by

introducing the continuation store so continuation frames contain a pointer to the next frame

(k) rather than the next frame itself. Hence, the recursive structure of continuation frames is

broken as well. Without the presence of recursive structures in the state space, it can now be

made finite by bounding the number of value addresses and continuation addresses.

Since the number of abstract (continuation and value) addresses is finite, an address may need

to be used multiple times, that is, the address allocation functions may allocate the same address

multiple times. As a consequence, when storing a value at a certain address in the store, any

other value that is stored at that address cannot simply be overwritten since this would not be

sound, that is, the new value stored at that address would not be an over-approximation of the

27

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

respective concrete values any more. For example, suppose that at a given address in the store

resides a function that always returns an integer and that this function would be overwritten

by a function returning a boolean. In this case, the new value stored at the specific address

does not account for the behaviour of the function that was removed. When the address is then

looked up in the store, the static analyser would only find a function returning a boolean and

would then only study this function’s behaviour. A similar problem applies to frames in the

continuation store.

The solution to this soundness problem is the use of abstract values, that is, the stores do no

longer map to a value or a continuation frame, but to abstract values and abstract continuation

frames respectively, which are part of a lattice. Upon the allocation of a value or frame in the

(continuation) store, the value or frame is joined with the lattice element that was already stored

earlier. In the formalisation of the ĈESK machine, a set lattice is used, which constructs abstract

values by means of storing them in a set, using the partial order ⊆ and set union ∪ as join

operator. When reading a value or frame in one of the stores, all values or frames stored in the

corresponding set must be considered by the abstract interpreter, resulting in nondeterminism

and hence, loss of precision. As a result, the choice of lattice and the allocation of addresses

have a significant influence on the precision of the analysis.

We now present the abstracted semantics of λ0 by specifying the different components of the

ĈESK machine. Changes with regard to the concrete semantics of λ0 are marked in grey.

Abstract State Space

Figure 3.7 depicts the abstract state space for λ0. The state space is rendered finite by of bounding

the set of (continuation) addresses. Hence, both Âddr and K̂Addr are finite sets, which impacts

the stores that now map addresses to sets of values and continuation addresses to sets of frames.

λ0

ς̂ ∈ Σ̂ = Ĉontrol× K̂Addr

ĉ ∈ Ĉontrol ::=
ev(e, ρ̂)

| val(v̂)

v̂ ∈ V̂al ::=
clo(lam, ρ̂)

ρ̂ ∈ Ênv = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr→ P(V̂al)

Ξ̂ ∈ K̂Store = K̂Addr→ P(F̂rame)

φ̂ ∈ F̂rame ::=
halt

| fun(e, ρ̂, k̂)

| arg(v̂, k̂)

| bnd(e, ρ̂, k̂)

â ∈ Âddr A finite set of addresses for values.

k̂ ∈ K̂Addr A finite set of addresses for continuations.

Figure 3.7.: Abstract state space for λ0.

To see why the abstract state space is finite, consider the possible number of states Σ̂× Ŝtore× K̂Store
it may contain when the sets of addresses are finite. Each state ς consists out of a control com-

28

3.1. λ0, a Sequential Base Language

ponent ĉ and a continuation address k̂. Since the number of continuation addresses is finite,

the number of possible states is finite if the number of possible control components is finite. A

control component is an evaluation component consisting out of an expression e and an envi-

ronment ρ̂ or a value v. Since every program has finite length, the number of expressions in the

program is finite. The number of possible environments ρ̂ is finite for the same reason, since a fi-

nite program can only contain a finite number of variables and can only map variables to a finite

set of addresses. Hence, the number of closures that can be constructed is finite, meaning that

the number of possible states is finite. Using similar reasoning, it can be shown that the number

of possible value stores σ̂, continuation stores Ξ̂ and frames φ̂ are finite. Hence, bounding the

number of (continuation) addresses results in a finite state space, meaning that the number of

states the abstract interpreter can generate is finite as well. This is a crucial requirement for an

abstract interpreter, as it guarantees decidability.

Abstract Injection Function

The abstract injection function înject : Exp → Σ̂ injects an expression into an abstract state. The

function is defined as follows:

înject(e) = 〈ev(e, []), k̂0〉

where k̂0 is a special abstract continuation address reserved for the halt continuation, analogous

to k0 in the concrete semantics.

Abstract Transition Relation

Like the concrete transition function for λ0, the abstract transition relation for λ0 uses an abstract

atomic evaluation relation to evaluate atomic expressions. This relation, depicted in Figure 3.8,

is denoted as ⇓̂. The rule for evaluating lambdas does not need modification. On the other hand,

in rule var, the new semantics of the store need to be taken into account: the abstract store

relates addresses to sets of values instead of relating addresses to plain values.

λ0

v̂ ∈ σ̂(ρ̂(x))

ρ̂, σ̂ ` x ⇓̂ v̂
var

ρ̂, σ̂ ` lam ⇓̂ clo(lam, ρ̂)
lambda

Figure 3.8.: Abstract atomic evaluation rules for λ0.

Analogously to the concrete transition function, the abstract transition relation for λ0 also makes

use of two auxiliary functions for address allocation:

âlloc : Var× Ŝtore→ Âddr

k̂alloc : Exp× Ênv× Ŝtore× K̂Store→ K̂Addr

which now operate on the abstract state space. In the concrete semantics of λ0, the exact

definitions of alloc and kalloc are of low interest as long as they always generate a fresh address.

In an abstract interpreter, however, they can be used to tune the precision of the analysis as

their definitions also influence the structure of (continuation) addresses, as well as the number

29

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

of addresses available. Hence, the definitions of these functions are crucial in the abstract CESK

machine as they define when and how addresses are reused. These definitions also have an

impact on the size of the state space of the abstract interpreter, since they directly interfere with

the structure of (continuation) addresses. Hence, the definitions of âlloc and k̂alloc immediately

impact the precision of the analyses performed by the abstract interpreter. In Figure 3.9 an

allocation strategy presented by Van Horn & Might (2012) is formalised, which uses variable

names as addresses and expressions as continuation addresses. Note again that is crucial for

the sets of abstract addresses and abstract continuation addresses, Âddr and K̂Addr, to be finite.

λ0
Âddr = Var

K̂Addr = Exp

âlloc(x, σ̂) = x

k̂alloc(e, ρ̂, σ̂, Ξ̂) = e

Figure 3.9.: Abstract addresses for λ0.

The abstract transition relation ↪̂−→ : Σ̂× Ŝtore× K̂Store→ Σ̂× Ŝtore× K̂Store, using the ab-

stract atomic evaluation rules and the definitions of the abstract address allocation functions, is

depicted in Figure 3.10. The transition rules now take into account that values in the store and

continuation store need to be joined upon updates and that multiple values may be present at

the same address upon lookup.

λ0

ρ̂, σ̂ ` ae ⇓̂ v̂

〈ev(ae, ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈val(v̂), k̂〉, σ̂, Ξ̂
atomic-evaluation

φ̂ = fun(ea, ρ̂, k̂) k̂′ = k̂alloc(e f , ρ̂, σ̂, Ξ̂)

〈ev((e f ea), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈ev(e f , ρ̂), k̂′〉, σ̂, Ξ̂ t [k̂′ 7→ {φ̂}]
appl-operator

fun(ea, ρ̂, k̂′) ∈ Ξ̂(k̂) φ̂ = arg(v̂ f , k̂′) k̂′′ = k̂alloc(ea, ρ̂, σ̂, Ξ̂)

〈val(v̂ f), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈ev(ea, ρ̂), k̂′′〉, σ̂, Ξ̂ t [k̂′′ 7→ {φ̂}]
appl-operand

arg(v̂ f , k̂′) ∈ Ξ̂(k̂) v̂ f = clo(lam, ρ̂) lam = (λ(x) e) â = âlloc(v̂a, σ̂)

〈val(v̂a), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈ev(e, ρ̂[x 7→ â]), k̂′〉, σ̂ t [â 7→ {v̂a}], Ξ̂
appl-body

φ̂ = bnd(x, eb, ρ̂, k̂′) k̂′ = k̂alloc(ex, ρ̂, σ̂, Ξ̂)

〈ev((letrec ((x ex)) eb), ρ̂), k̂〉 ↪̂−→ 〈ev(ex, ρ̂), k′〉, σ̂, Ξ̂ t [k̂′ 7→ {φ̂}]
letrec-binding

bnd(x, eb, ρ̂, k̂′) ∈ Ξ̂(k̂) â = âlloc(v̂x, σ̂)

〈val(v̂x), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈ev(eb, ρ̂[x 7→ â]), k̂′〉, σ̂ t [â 7→ {v̂x}], Ξ̂
letrec-body

Figure 3.10.: Abstract transition rules for λ0.

Due to the sets of values and continuation frames that may be stored at a particular address,

30

3.2. λφ, a Simple Concurrent Language

nondeterminism is introduced in the analysis. After all, when an address is looked up in one of

the stores, multiple values may be present. Hence, multiple transition rules may be applicable

at the same time. As such, the abstract transition relation generates a graph of states, as shown

in Figure 2.2.

Abstract Evaluation Function

The abstract evaluation function êval : Exp→ P(Σ̂× Ŝtore× K̂Store) defines the states the ĈESK
machine can reach during the abstract interpretation of an expression. It is defined as follows:

êval(e) = {〈ς̂, σ̂, Ξ̂〉 | înject(e), [], [k̂0 7→ halt] ↪̂−→ ∗ς̂, σ̂, Ξ̂}.

Formally, the set êval(e) is called the abstract collecting semantics of e and contains all states an

abstract interpreter may reach in zero or more steps. By construction, this set is finite, making

it suitable for performing static analyses. For a sound static analysis, the set êval(e) must over-

approximate the set eval(e), that is, α(eval(e)) v êval(e) under the given abstraction map α.

3.2. λφ, a Simple Concurrent Language

In this section, we extend λ0 by adding futures, which can be used to build multithreaded

programs. The language so obtained is called λφ. First, the syntax of λφ is presented. Afterwards,

its concrete semantics is discussed, whereafter it is shown how this semantics can be abstracted.

Again, our formalisation is based on the conventions of Stiévenart (2018).

3.2.1. Syntax

Figure 3.11 depicts the syntax of λφ. The set of expression types from λ0 is extended, as is

indicated by means of ellipsis. A future allows an expression to be evaluated in another thread

and provides an interface to monitor that thread. Hence, an expression can be executed in

another thread by means of the future primitive. For example (future (fib 5)) creates a

future that evaluates the expression (fib 5) in a new thread. Similarly, a nullary function can

be called in another thread by means of future-call. To get the return value of a future, the

function deref is used. A call to deref only succeeds if the future has already finished its

computation; otherwise, it blocks until the future has finished its computation after which the

return value of the future is returned, e.g., (deref f) returns the return value of the future

f and blocks until it is present. Finally, it is also possible to abort the computation performed

by a future using the future-cancel primitive, which stops the future and sets it to a special

cancelled state.

The arguments to all functions except future are required to be atomic expressions since

we assume the program is written in ANF (see Section 3.1.3). Only the argument to future
may be any expression, as multithreaded evaluation is nonsensical for atomic expressions as

they are evaluated in a single step (see the atomic evaluation rules for λ0 in Figure 3.3). Also,

only one expression can be passed to a future. This limitation is merely imposed to simplify

our formalisation and does not impose functional restrictions on the language since multiple

expressions can be combined together, for example using nested calls to letrec.

31

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

λφ

e ∈ Exp ::= . . .
| (future e)
| (future-call ae)

| (future? ae)

| (deref ae)

| (future-done? ae)

| (future-cancel ae)

| (future-cancelled? ae)

Expressions

Future creation

Future creation

Predicate

State access

Predicate

Future cancellation

Predicate

Figure 3.11.: Syntactic extensions for λφ, a simple concurrent language.

Example 3.3 illustrates how futures may be used to create multithreaded applications.

Example 3.3 Parallel Computations using Futures

The function sum-vector in Listing 3.3 uses futures to create parallel computations in

order to speed up a summation. The function sum-vector sums all the elements in

a vector. Therefore, it uses a function sum which recursively divides the work among

multiple futures: sum assigns half of the computation to a newly created future and

takes care of the other half itself, except when the result is trivial and can be returned

immediately. When both partial results have been calculated, they can be summed to

produce the final result.

1 (define (sum-vector vector)
2 (define (sum left right)
3 (if (>= left (- right 1))
4 ;; Base case where the result is trivial.
5 (vector-ref vector left)
6 (let ((middle (round (+ left (/ (- right left) 2)))))
7 ;; Create a new parallel computation.
8 (let ((fut (future (sum left middle))))
9 (let ((right-sum (sum middle right)))

10 ;; Wait for the result of the future.
11 (let ((left-sum (deref fut)))
12 ;; Compute the final result.
13 (+ left-sum right-sum)))))))
14 (sum 0 (vector-length vector)))

Listing 3.3: Parallel vector summation.

Note that the algorithm in Listing 3.3 merely serves as an example of multithreaded

computations using futures and that more performant algorithms exist.

32

3.2. λφ, a Simple Concurrent Language

3.2.2. Concrete Semantics

We formalise the semantics of λφ by presenting extensions to the CESK machine for λ0. As a

result, the abstract machine becomes a parallel CESK (PCESK) machine, due to the presence of

multiple threads in the form of futures.

State Space

Figure 3.12 presents the extensions needed to the state space of λ0 for λφ. Central to this

extension is the addition of a thread map, Π, which provides a mapping from thread identifiers

p to states ς, where a state ς represents the state of one thread. Since a thread is cancellable,

a special thread state cancelled is added. Also, a new kind of value is added for futures. The

letter p is used to denote thread identifiers to remain consistent with literature, which generally

refers to threads and futures as processes.

λφ

π ∈ Π ::= PID→ Σ
v ∈ Val ::= . . .

| fut(p)
ς ∈ Σ ::= . . .

| cancelled
p ∈ PID A set of thread identifiers.

Thread Map

Values

Future

States

Cancelled future

Thread Identifiers

Figure 3.12.: State space for λφ.

Injection Function

The injection function for λφ differs from the injection function for λ0 due to the newly added

thread map. The concurrent injection function injc : Exp→ Π for λφ is defined as follows:

injc(e) = [p0 7→ 〈ev(e, []), k0〉]

where k0 is a special continuation address reserved for the halt continuation and p0 is a special

thread identifier reserved for the initial (main) thread. When the machine reaches a state in

which every thread has a value in its control component along with the halt continuation on

top of its stack, the machine has completed evaluation and halts.

Transition Relation

Since λφ is an extension of λ0, there is also a differentiation between atomic expressions and com-

plex expressions. As no new atomic expressions have been introduced, the atomic evaluation

function remains unaltered. Similarly, the address allocation functions used by the sequential

CESK machine do not need modification. However, the transition function for λφ makes use of

a third auxiliary function:

palloc : Σ×Π→ PID

33

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

which is used to allocate new thread identifiers for futures. Like the address allocation functions,

the definition of this function also impacts the precision of the analysis executed by an abstract

interpreter. However, in the concrete case, the number of thread identifiers may be infinite.

Hence, concrete thread identifier allocation can be defined analogously to concrete address

allocation. Figure 3.13 shows the structure of thread identifiers in λφ, as well as the definition

of palloc.

λφ

PID = N

palloc(ς, π) = | dom(π) |
Thread Identifiers

Thread Identifier Allocation

Figure 3.13.: Thread identifiers for λφ.

The transition relation ↪−→: Σ× Store× KStore→ Σ× Store× KStore used for λ0 is not suited to

handle multiple threads. Therefore, we henceforth refer to it as the sequential transition function,

since it defines how a single thread progresses during evaluation. For λφ, a concurrent transition

relation : Π×Store×KStore→ Π×Store×KStore able to handle multiple threads is used. This

most important rules of the concurrent transition relation are detailed in Figure 3.14. In each

rule, the transition relation is annotated with the thread identifier p of the thread performing

the transition (p):

• Rule sequential-step links the concurrent transition relation to the sequential transition

relation: a thread being able to take a sequential step as described by the sequential

transition relation can progress.

• Rules future and future-call stipulate how new futures are created. To create a new future,

the thread map is extended with a binding from a newly allocated thread identifier to a

new state containing the expression to be evaluated together with the current environment.

In rule future-call, this expression is the body of the function referred to as well as its

enclosing environment; the function argument is ignored as our formalisation only allows

nullary functions, analogous to Clojure’s semantics of future-call. The thread creating

the future continues with a value representing a handle to the newly created future.

• Rule deref defines how the return value of a future can be read.

The remaining transition rules for λφ and their explanation are presented in Appendix A.

34

3.2. λφ, a Simple Concurrent Language

λφ

π(p) = ς ς, σ, Ξ ↪−→ ς′, σ′, Ξ′

π, σ, Ξ p π[p 7→ ς′], σ′, Ξ′
sequential-step

π(p) = 〈ev((future e), ρ), k〉 ς = 〈ev(e, ρ), k0〉 p′ = palloc(ς, π)

π, σ, Ξ p π[p 7→ 〈val(fut(p′)), k〉, p′ 7→ ς], σ, Ξ
future

π(p) = 〈ev((future-call ae), ρ), k〉 ρ, σ ` ae ⇓ v f v f = clo(lam, ρ f)
lam = (λ(x) e) ς = 〈ev(e, ρ f), k0〉 p′ = palloc(ς, π)

π, σ, Ξ p π[p 7→ 〈val(fut(p′)), k〉, p′ 7→ ς], σ, Ξ
future-call

π(p) = 〈ev((deref ae), ρ), k〉 ρ, σ ` ae ⇓ fut(p′) π(p′) = 〈val(v), k0〉
π, σ, Ξ p π[p 7→ 〈val(v), k〉], σ, Ξ

deref

Figure 3.14.: Main concurrent transition rules for λφ.

Since there is no rule to dereference a future that has not yet terminated, deref effectively is a

blocking call, that is, a thread trying to dereference a non-terminated future will block until the

future has terminated its computation.

The concurrent transition relation also shows how multithreaded evaluation is nondeterministic

since it does not specify the order in which the threads should be transitioned, that is, any thread

that can make a transition is allowed to do so. However, only one thread can make progress at

any time due to the definition of the rules. Hence, the concurrent transition relation models all

possible thread interleavings.

Evaluation Function

The evaluation function for λφ evalc : Exp→ P(Π× Store×KStore) defines the states reachable

by the PCESK machine during the evaluation of an expression when starting with an empty

store and a continuation store that only maps k0 to the halt continuation. It is defined as follows:

evalc(e) = {〈π, σ, Ξ〉 | injc(e), [], [k0 7→ halt] ∗ π, σ, Ξ}

where [] denotes the empty store.

3.2.3. Abstract Semantics

In this section, we present the abstract semantics of λφ and show how the PCESK machine just

presented is transformed into an abstract PCESK machine, denoted as P̂CESK. Again, the goal

is to obtain a machine with a finite state space. We now present the abstracted semantics of λφ

by specifying the different components of the P̂CESK machine; the differences with regard to

the concrete semantics are marked in grey.

35

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

Abstract State Space

The abstract state space for λφ is depicted in Figure 3.15. By bounding the number of thread

identifiers, the state space is made finite. This affects the abstract thread map Π̂, as multiple

threads may now share the same thread identifier.

λφ

π̂ ∈ Π̂ ::= P̂ID→ P(Σ̂)

v̂ ∈ V̂al ::= . . .
| fut(p̂)

ς̂ ∈ Σ̂ ::= . . .
| cancelled

p̂ ∈ P̂ID A finite set of thread identifiers.

Figure 3.15.: Abstract state space for λφ.

By bounding the number of thread identifiers, the state space is made finite (Might & Van Horn,

2011). To see why, consider the size of the state space of the abstract PCESK machine (Π̂× Ŝtore× K̂Store).
In Section 3.1.4, we have already shown that the number of states ς̂ is finite, as well as the num-

ber of stores σ̂ and continuation stores Ξ̂. To prove the entire state space is finite, we only need

to show that the number of thread maps is finite, which is trivial since both the set of thread

identifiers P̂ID and the set of states Σ̂ are finite.

Abstract Injection Function

The abstract injection function for λφ now injects an expression into an abstract state. The

function is defined as follows:

înjc(e) = [p̂0 7→ 〈ev(e, []), k̂0〉]

where k̂0 is an abstract continuation address reserved for the halt continuation and p̂0 is the

thread identifier reserved for the initial thread.

Abstract Transition Relation

The transition relation for λφ is abstracted similarly to the sequential transition function for λ0.

Like the concrete concurrent transition relation, the abstract concurrent transition relation uses

the following auxiliary function:

p̂alloc : Σ̂× Π̂→ P̂ID

to allocate abstract thread identifiers. Like the abstract auxiliary functions for address allocation,

its definition is very important to the precision of the P̂CESK machine since it determines how

thread identifiers are reused. After all, it is now required for P̂ID to be finite. Figure 3.16 depicts

the structure of thread identifiers and defines the corresponding abstract allocation function.

36

3.2. λφ, a Simple Concurrent Language

λφ

P̂ID = Exp p̂alloc(ς̂, π̂) = e where ς̂ = 〈ev(e, _), _〉

Figure 3.16.: Abstract thread identifiers for λφ.

This allocation strategy allocates the same abstract thread identifier for all threads that evaluate

the same expression. Hence, the analysis cannot distinguish between such threads. We do not

define p̂alloc when the control component of ς̂ is of the form val(_) since such cases should

never occur.

Of course, other definitions for p̂alloc, as well as for âlloc and k̂alloc, are possible; we refer to

Gilray et al. (2016) for an extensive study on allocation strategies. Importantly, they find that no

allocation strategy produces an unsound analysis.

Given the above definition for p̂alloc, it is easy to see that the set of abstract thread identifiers,

P̂ID, is finite. After all, we now have |P̂ID| = |Σ̂| and we have shown that the size of Σ̂ is finite

in Section 3.1.4.

The most important rules of the abstract concurrent transition relation ̂ : Π̂× Ŝtore× K̂Store
→ Π̂× Ŝtore× K̂Store for λφ are detailed in Figure 3.17. In each rule, the transition relation is

annotated with the abstract thread identifier p̂ of the abstract thread performing the transition

(̂ p̂). We refer again to Appendix A for the remaining abstract transition rules for λφ.

λφ

ς̂ ∈ π̂(p̂) ς̂, σ̂, Ξ̂ ↪̂−→ ς̂′, σ̂′, Ξ̂′

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ ς̂′], σ̂′, Ξ̂′
sequential-step

〈ev((future e), ρ̂), k̂〉 ∈ π̂(p̂) ς̂ = 〈ev(e, ρ̂), k̂0〉 p̂′ = p̂alloc(ς̂, π̂)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(fut(p̂′)), k̂〉, p̂′ 7→ ς̂], σ̂, Ξ̂
future

〈ev((future-call ae), ρ̂), k̂〉 ∈ π̂(p̂) ρ̂, σ̂ ` ae ⇓̂ v̂ f v̂ f = clo(lam, ρ̂ f)

lam = (λ(x) e) ς̂ = 〈ev(e, ρ̂ f), k̂0〉 p̂′ = p̂alloc(ς̂, π̂)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(fut(p̂′)), k̂〉, p̂′ 7→ ς̂], σ̂, Ξ̂
future-call

〈ev((deref ae), ρ̂), k̂〉 ∈ π̂(p̂) ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) 〈val(v̂), k̂0〉 ∈ π̂(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(v̂), k̂〉], σ̂, Ξ̂
deref

Figure 3.17.: Main abstract concurrent transition rules for λφ.

The changes made to the concurrent transition relation to render it abstract all are related to the

finiteness of the set of thread identifiers, which implies that now multiple thread states may be

related to a single thread identifier. This causes more nondeterminism to arise in the analysis

as multiple states may be present for any given thread identifier. As a result, multiple transition

rules may be applicable at the same time and looking up the status of a thread may also become

nondeterministic. Suppose for example a thread identifier p is related to two futures which both

37

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

have finished their computation. When a thread now wants to get the result value of a future

identified by p, rule deref is applicable twice, since multiple return values are related to p.

Abstract Evaluation Function

The abstract evaluation function for λφ êvalc : Exp→ P(Π̂× Ŝtore× K̂Store) defines the states

the P̂CESK machine can reach during the abstract interpretation of an expression. It is defined

as follows:

êvalc(e) = {〈π̂, σ̂, Ξ̂〉 | înjc(e), [], [k̂0 7→ halt] ∗ π̂, σ̂, Ξ̂}.

By construction, this set is finite and hence suitable for static analysis, contrary to the concrete

evaluation function for λφ. This finiteness is an immediate result of the finite state space of the

P̂CESK machine.

3.3. λα, a Concurrent Language with Atoms

In this section, we present λα, a final extension to λ0 and λφ. λα is a concurrent language with

futures and atoms. Atoms provide race-free updates to shared state, that is, an atom provides

functionalities to change the value it encapsulates while guaranteeing the absence of race

conditions. It is typically required for the value stored within an atom to be immutable since

direct mutations to the value stored within the atom are still subject to race conditions. Also,

the values stored within multiple atoms cannot be updated in a coordinated manner.

We now introduce the new syntactic forms of λα and exemplify how atoms can be used in

practice. Thereafter, the concrete and abstract semantics of λα are presented.

3.3.1. Syntax

The syntactic extensions for λα to λφ are outlined in Figure 3.18. Again, ANF is assumed. Five

new expression types are presented. An atom can be created by means of the function atom,
which takes an initial value to store within the atom as argument. For example, the expression

(atom 0) creates an atom that stores the value zero. To update the value it stores, a function

reset! is foreseen. The compare-and-set! function atomically compares the value contained

in an atom to a given value and updates the value stored within the atom when the values

are equal; compare-and-set! returns a boolean indicating whether the value within the atom

was updated. The expression (compare-and-set! atm 0 1) stores the value 1 in atom atm if

the atom currently stores 0. The comparison of the value stored within the atom to 0 and the

possible replacement of that value by 1 happen atomically. A third function to update the value

within an atom is swap!, which can be used to change the value stored in an atom by applying

a function to it, storing the function’s result. However, if the value of the atom changes in the

meantime, swap! starts again using the new value stored within the atom. For example, to

increment the value stored within an atom atm, the following expression can be used: (swap!
atm inc). Finally, to read the value stored within an atom, the function read is provided.

38

3.3. λα, a Concurrent Language with Atoms

λα
e ∈ Exp ::= . . .

| (atom ae)

| (read ae)

| (reset! ae ae)

| (compare-and-set! ae ae ae)

| (swap! ae ae)

Expressions

Atom creation

State access

State change

Controlled state change

Controlled state change

Figure 3.18.: Syntax of λα, a concurrent language with atoms.

The usage of the functions provided by atoms, as depicted in Figure 3.18, is illustrated in Example

3.4 which presents an implementation of the Producer-Consumer Problem. Next, Example 3.5

demonstrates how locks can be implemented using compare-and-set!.

Example 3.4 Producer-Consumer Problem

A work list shared by several threads is an example of shared state that can be managed

using atoms. In the producer-consumer problem, some threads are producers who add

items to the work list, and other threads are consumers, who take items from the work

list. Several constraints apply, however. For example, the work list may never grow

bigger than a specific size and every work item added to the list must (eventually) be

consumed exactly once.

Listing 3.4 depicts a solution to this problem using atoms. The work list is encapsulated

in an atom called work, which can safely be updated concurrently by using its dedicated

functions. To consume an item, the work list is read. If it is empty, the consumer goes

to sleep for some time and retries again later. Otherwise, the consumer tries to replace

the list stored in the atom by a list of which the first element has been removed using

compare-and-set! (line 10). This step only succeeds when the list stored in the atom

was not manipulated since it was first read by the consumer. In this case, the consumer

can consume the element it deleted from the work list. Otherwise, it has to try again.

To produce an item, the producer first generates a new item which is to be added to

the list. It then reads the list stored in the atom. If the list is full, the producer goes to

sleep and tries again at a later point in time. Otherwise, it tries to replace the list by

a list to which the newly created item is added (line 24). Upon success, the producer

continues with the next item. Upon failure, the producer tries to add the same item

again.

The solution presented in Listing 3.4 illustrates the use of atoms to manage shared

memory.

1 (define work (atom '())) ;; Shared work list.
2 (define max-size 10) ;; Maximum size of the work list.
3

4 (define (consumer)
5 (let loop ()
6 (let ((worklist (read work))) ;; Read work list.
7 (if (null? worklist)

39

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

8 (sleep 10) ;; Work list is empty, go to sleep.
9 ;; Try to pop an item of the work list and process it.

10 (begin (if (compare-and-set! work worklist (cdr worklist))
11 (consume-item (car worklist))))))
12 (loop)))
13

14 (define (producer)
15 (let loop ()
16 ;; Create a work item and push it on the worklist.
17 (let try-add ((workitem (produce-item)))
18 (let ((worklist (read work)))
19 (if (>= (length worklist) max-size)
20 (begin
21 (sleep 10) ;; Work list is full, go to sleep and try

again.↪→

22 (try-add workitem))
23 (begin
24 (if (compare-and-set! work worklist (cons workitem

worklist))↪→

25 (loop) ;; Item has been added successfully, produce
next.↪→

26 (try-add (read work))))))))) ;; Work list has been
changed, try again.↪→

27

28 (define (consume-item item) ...)
29 (define (produce-item) ...)

Listing 3.4: Solution to the Producer-Consumer Problem using atoms.

Example 3.5 Lock Implementation

Concurrency primitives can often be used to build other known concurrency primitives.

A concurrency primitive that can be built using the compare-and-swap! functionality

provided by atoms are spinning locks.

A lock can be represented as an atom that stores a boolean which indicates whether

the lock is held (true) or not (false). By storing the boolean in an atom, safe concurrent

updates become possible. To acquire a lock, compare-and-set! is used to change the

value stored in the atom to true, indicating the lock is held by a thread. Upon success,

compare-and-set! returns true and the thread holds the lock. Otherwise, the thread

loops until it succeeds to acquire the lock. To release a lock, it suffices to set the value

encapsulated in the atom to false using reset!. There is no need to use compare-and-
set! for this operation, since only the thread holding the lock can modify the value

inside the atom. The complete implementation is shown in Listing 3.5.

40

3.3. λα, a Concurrent Language with Atoms

1 (define (new-lock) (atom #f))
2 (define (acquire lock)
3 (let try () ;; Spin loop.
4 (if (compare-and-set! lock #f #t)
5 #t
6 (try))))
7 (define (release lock) (reset! lock #f))

Listing 3.5: Implementation of spinning locks using atoms.

3.3.2. Concrete Semantics

We now present the concrete semantics of λα. The injection and evaluation functions of the

PCESK machine will not be presented since these do not need modification. For their definition,

we refer back to Section 3.2.2.

State Space

Figure 3.19 depicts the extensions needed to the state space of λφ for λα. Only minor extensions,

a new value type for atoms and a new continuation frame for swap!, are necessary.

λα
v ∈ Val ::= . . .

| atom(a)
φ ∈ Frame ::= . . .

| swp(v, v, v, k)

Values

An atom

Continuation frames

swap! continuation

Figure 3.19.: State space for λα.

Transition Function

The concurrent transition relation : Π × Store× KStore → Π × Store× KStore for λφ needs

to be extended to support the newly introduced functions on atoms. Since these functions are

executed locally to one thread, we formalise them by extending the sequential transition function

↪−→: Σ× Store× KStore → Σ× Store× KStore. By means of rule sequential-step, the transition

rules for atoms also become part of the concurrent transition relation (see Figure 3.14).

Figure 3.20 depicts the rules that are added to the sequential transition relation to support

atoms. Eight new rules are added:

• Rule atom defines the creation of an atom. Formally, an atom contains the address of the

value it is said to store; the value itself is added to store.

• Rule read stipulates how the value stored within an atom is read: to read the value stored

within an atom, the value related to the address contained by the atom is looked up in the

store.

41

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

• Rule reset states that the value stored within an atom can be altered by updating the

corresponding entry in the store.

• Rules cas-t and cas-f define compare-and-set!. To evaluate this function, the value stored

within the atom is compared to its second argument. If the values are equal, the value

stored within the atom is replaced and true is returned. Otherwise, nothing happens

and false is returned. The premises indicating this condition are indicated in red. The

arguments to compare-and-set! being atomic expressions guarantees that the function

can be evaluated in a single step, thereby guaranteeing atomicity of the comparison and

value update.

• Rules swap, swap-succeed and swap-fail stipulate how swap! is executed. The argument to

swap! is a unary function which is called with the value stored in the atom as its argument.

If after the evaluation of the function call the value stored in the atom is unchanged, it

is replaced with the result of the function call. Otherwise, the function is recalled with

the new value that has been stored in the atom. As a result, the function that is given

to swap!may be executed multiple times. The premises indicating the condition that the

value must remain unaltered are indicated in red.

λα

a = alloc(ae, σ) ρ, σ ` ae ⇓ v
〈ev((atom ae), ρ), k〉, σ, Ξ ↪−→ 〈val(atom(a)), k〉, σ[a 7→ v], Ξ

atom

ρ, σ ` ae ⇓ atom(a) v = σ(a)
〈ev((read ae), ρ), k〉, σ, Ξ ↪−→ 〈val(v), k〉, σ, Ξ

read

ρ, σ ` aea ⇓ atom(a) ρ, σ ` aev ⇓ v
〈ev((reset! aea aev), ρ), k〉, σ, Ξ ↪−→ 〈val(v), k〉, σ[a 7→ v], Ξ

reset

ρ, σ ` aea ⇓ atom(a) ρ, σ ` aeold ⇓ vold ρ, σ ` aenew ⇓ vnew σ(a) = vold

〈ev((compare-and-set! aea aeold aenew), ρ), k〉, σ, Ξ ↪−→ 〈val(#t), k〉, σ[a 7→ vnew], Ξ
cas-t

ρ, σ ` aea ⇓ atom(a) ρ, σ ` aeold ⇓ vold ρ, σ ` aenew ⇓ vnew σ(a) 6= vold

〈ev((compare-and-set! aea aeold aenew), ρ), k〉, σ, Ξ ↪−→ 〈val(#f), k〉, σ, Ξ
cas-f

ρ, σ ` aea ⇓ atom(a)
σ(a) = vold ρ, σ ` ae f ⇓ v f v f = clo(lam, ρ f) lam = (λ(x) e)

φ = swp(atom(a), vold, k, v f) a′ = alloc(vold, σ) k′ = kalloc(e, ρ f , σ, Ξ)

〈ev((swap! aea ae f), ρ), k〉, σ, Ξ ↪−→ 〈ev(e, ρ f [x 7→ a′]), k′〉, σ[a′ 7→ vold], Ξ[k′ 7→ φ]
swap

Ξ(k) = swp(atom(a), vold, k′, v f) σ(a) = vold

〈val(v), k〉, σ, Ξ ↪−→ 〈val(v), k′〉, σ[a 7→ v], Ξ
swap-succeed

Ξ(k) = swp(atom(a), vold, k′, v f) σ(a) = vcurr
vcurr 6= vold φ = swp(atom(a), vcurr, k′, v f) v f = clo(lam, ρ f)

lam = (λ(x) e) a′ = alloc(vcurr, σ) k′′ = kalloc(e, ρ f , σ, Ξ)

〈val(v), k〉, σ, Ξ ↪−→ 〈ev(e, ρ f [x 7→ a′]), k′′〉, σ[a′ 7→ vcurr], Ξ[k′′ 7→ φ]
swap-fail

Figure 3.20.: Sequential transition rules for λα.

42

3.4. Conclusion

3.3.3. Abstract Semantics

In this section, we present the abstract semantics of λα. The only part of the PCESK machine

that needs abstraction is the transition function, of which the abstract version is shown in Figure

3.21. Changes with respect to the concrete evaluation rules are marked in grey.

λα

â = âlloc(ae, σ̂) ρ̂, σ̂ ` ae ⇓̂ v̂

〈ev((atom ae), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈val(atom(â)), k̂〉, σ̂ t [â 7→ v̂], Ξ̂
atom

ρ̂, σ̂ ` ae ⇓̂ atom(â) v̂ ∈ σ̂(â)

〈ev((read ae), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈val(v̂), k̂〉, σ̂, Ξ̂
read

ρ̂, σ̂ ` aea ⇓̂ atom(â) ρ̂, σ̂ ` aev ⇓̂ v̂

〈ev((reset! aea aev), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈val(v̂), k̂〉, σ̂ t [â 7→ v̂], Ξ̂
reset

ρ̂, σ̂ ` aea ⇓̂ atom(â)
ρ̂, σ̂ ` aeold ⇓̂ v̂old ρ̂, σ̂ ` aenew ⇓̂ v̂new v̂curr ∈ σ̂(â) v̂curr = v̂old

〈ev((compare-and-set! aea aeold aenew), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈val(#t), k̂〉, σ̂ t [â 7→ v̂new], Ξ̂
cas-t

ρ̂, σ̂ ` aea ⇓̂ atom(â)
ρ̂, σ̂ ` aeold ⇓̂ v̂old ρ̂, σ̂ ` aenew ⇓̂ v̂new v̂curr ∈ σ̂(â) v̂curr 6= v̂old

〈ev((compare-and-set! aea aeold aenew), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈val(#f), k̂〉, σ̂, Ξ̂
cas-f

ρ̂, σ̂ ` aea ⇓̂ atom(â)
v̂old ∈ σ̂(â) ρ̂, σ̂ ` ae f ⇓̂ v̂ f v̂ f = clo(lam, ρ̂ f) lam = (λ(x) e)

φ̂ = swp(atom(â), v̂old, k̂, v̂ f) â′ = âlloc(v̂old, σ̂) k̂′ = k̂alloc(e, ρ̂ f , σ̂, Ξ̂)

〈ev((swap! aea ae f), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈ev(e, ρ̂ f [x 7→ â′]), k̂′〉, σ̂ t [â′ 7→ v̂old], Ξ̂ t [k̂′ 7→ φ̂]
swap

swp(atom(â), v̂old, k̂′, v̂ f) ∈ Ξ̂(k̂) v̂curr ∈ σ̂(â) v̂curr = v̂old

〈val(v̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈val(v̂), k̂′〉, σ̂ t [â 7→ v̂], Ξ̂
swap-succeed

Ξ̂(k̂) = swp(atom(â), v̂old, k̂′, v̂ f) v̂curr ∈ σ̂(â)
v̂curr 6= v̂old φ̂ = swp(atom(â), v̂curr, k̂′, v̂ f) v̂ f = clo(lam, ρ̂ f)

lam = (λ(x) e) â′ = âlloc(v̂curr, σ̂) k̂′′ = k̂alloc(e, ρ̂ f , σ̂, Ξ̂)

〈val(v̂), k̂〉, σ̂, Ξ̂ ↪̂−→ 〈ev(e, ρ̂ f [x 7→ â′]), k̂′′〉, σ̂ t [â′ 7→ v̂curr], Ξ̂ t [k̂′′ 7→ φ̂]
swap-fail

Figure 3.21.: Abstract sequential transition rules for λα.

3.4. Conclusion

In this chapter, we have gradually expanded the formalisation of a simple sequential language,

λ0, by successively adding futures (λφ) and atoms (λα). We also presented, for each language,

their abstract semantics according to the AAM technique from Van Horn & Might (2012). By

43

3. Towards an Abstract Interpreter for λα, a Concurrent Language with Atoms

doing so, we have obtained the formalisation of a non-modular abstract interpreter for λα, a

concurrent language with futures and atoms.

The abstraction of the interpreter is a source of nondeterminism and precision loss. As multiple

items may be stored at the same location in the stores and thread map, all options must be

considered by the abstract interpreter, that is, multiple transition rules may be applicable at

a given point in the analysis of a program. In addition, the transition rules of the concurrent

transition relation do not define in which order threads need to be evaluated and hence, all

interleavings are possible. Additionally, the abstraction also causes the interpreter’s state space

to be finite. As a result, the obtained abstract interpreter is suitable for static analysis and its

precision can be tuned by the specification of âlloc, k̂alloc and p̂alloc, which influences the size of

the state space and determines how addresses and thread identifiers are reused. A bigger state

space may result in a higher precision but at the cost of a higher computation time; a smaller

state space may result in a lower precision, but lowers the analysis’ computation time.

44

4
A N I NC R E M E N TA L T H R E A D - M O D U L A R A NA LYS I S FO R λα

In this chapter, we present an incremental thread-modular analysis for λα. In Section 4.1, we

first present a formalisation of thread interference based on the concept of effects, analogously

to what is common in recent literature. By doing so, we extend λα to λε. Thereafter, in Sec-

tion 4.2, we present an algorithm for a thread-modular analysis of λε. This algorithm is built

according to the ModConc design method of Stiévenart (2018) and is used as a basis for our

own incremental algorithm, which is presented in Section 4.3. In Section 4.4, we discuss some

possible optimisations our incremental algorithm may benefit from. In Section 4.5, we reflect

on the presented algorithms by discussing some general considerations. Finally, in Section 4.6,

we conclude this chapter by showing how the different analysis algorithms analyse a simple

concurrent program and by comparing their behaviour and results.

4.1. λε, a Formalisation of Thread Interference for λα

In Section 2.3.2, we already presented the concept of a thread-modular analysis for concurrent

languages. In a thread-modular analysis, the different abstract threads in a program are analysed

in isolation; in λα, threads are created by futures. Since threads may not be totally independent,

the actions of one thread may cause other threads to be reanalysed; this reanalysis is needed

to ensure soundness: if a thread would not be reanalysed, it cannot take into account the

behaviour of other threads. This is unneeded in a non-modular analysis, since there, all thread

interleavings are analysed explicitly.

In this section, we present a formalisation of thread interference, on which our thread-modular

analysis will be based. To do so, we first identify the behavioural aspects of threads that cause

them to interfere with one another. We then formalise these aspects and apply them to λα,

resulting in λε.

In a multithreaded program, the behaviour of one thread may influence the behaviour of one

or more other threads. Such influences may be caused by the modifications of shared-memory,

synchronisation and dynamic thread creation, for example. In general, we identify four standard

behavioural aspects of λα-threads that cause them to interfere:

• A thread may create a new parallel computation (thread) that executes a given expression

e in parallel to itself. In λα, parallel computations are created by calling the future and

future-call procedures.

45

4. An Incremental Thread-Modular Analysis for λα

• A thread may dereference another thread to read its return value. In λα, reading the return

value of a thread is done by means of a call to deref. This call may block, depending on

the state of the dereferenced thread.

• A thread may write a new value to a certain address in shared memory. In λα, all memory

is represented by means of the store σ and may be shared among threads.

• A thread may read a value from a certain address in memory. If the memory is shared,

the thread will read the value that was last written by any of the threads that have access

to that address in memory.

• A thread may inspect another thread’s state. In λα, a thread can call future-done? to

verify whether another thread has finished its execution and a thread may call future-
cancelled? to verify whether another thread has been cancelled.

• A thread may cancel another thread’s execution. In λα, calling future-cancel with the

thread identifier of a future will cause that future to abort its computation.

In summary, threads may influence each other by the effects they have on their shared environ-

ment. For brevity, henceforth we omit the effects that are related to future cancellation and state

inspection.

Now we have presented the effects threads may have on their environment, and therefore

on each other, we present their formalisation. This formalisation requires two steps. First, we

describe a formal notation for the effects themselves. Then, we annotate both the sequential and

concurrent transition relations of λα with these effects, as well as the atomic evaluation relation.

These annotations indicate, for each transition rule, the effects generated by the application of

that rule. Since these annotations are identical for the concrete and abstract transition rules, we

will only present the annotated abstract transition rules. Also, we only show the rules that need

modification, omitting the rules that do not generate effects, and indicate the added effects in

red. We will henceforth denote this extended formalisation of λα with effects as λε. It is thus

important to note that we do not extend the language itself, but merely its formalisation; the

actual (abstract) transition rules do not change, but are only annotated with effects.

4.1.1. Effects

Figure 4.1 depicts the formalisation of the effects just presented. Upon the creation of a new

thread, a creation effect c(p) is generated. This effect contains the thread identifier p of the newly

created future. Similarly, when a future is dereferenced, a dereferencing effect d(p) is generated

by the thread performing the dereferencing. Again, this effect contains the thread identifier p of

the future that is dereferenced. When a thread reads a value at a particular address in the store,

it generates a read effect r(a) containing the address a that was read. Likewise, when a thread

writes a value at a particular address in the store, it generates a write effect w(a) containing the

address a that was written to.

By incorporating thread identifiers and addresses in the effects, it becomes possible to track the

behaviour of threads and to infer their influence on one another. It is not needed to include the

thread identifier of the thread generating the effect since this can be inferred as the concurrent

transition rule is annotated with this identifier. The exact use of these effects will be discussed

in Section 4.2.

46

4.1. λε, a Formalisation of Thread Interference for λα

λε
eff ∈ Effect ::=

c(p)
| d(p)
| r(a)
| w(a)

Effects

Future creation

Future dereferencing

Address read

Address write

Figure 4.1.: Effects for λε.

For brevity, we omit the definition of the abstract effects for λε; their definition is completely

analogous to the one of the concrete effects shown in Figure 4.1, but they include abstract thread

identifiers and abstract addresses instead of concrete thread identifiers and concrete addresses

respectively. We will also only annotate the stored thread identifiers and addresses with a hat,

as this is sufficient to see that an effect is abstract.

4.1.2. Abstract Atomic Evaluation Relation

The abstract atomic evaluation relation for λε is depicted in Figure 4.2. The generation of an

abstract effect by the abstract atomic evaluation relation is denoted as ⇓̂
êff

. Rule var now generates

an abstract read effect. To see why, observe the abstract atomic evaluation of a variable x: to

abstractly evaluate this variable, the abstract address â, related to x by the environment ρ̂, is

looked up in the store σ (v̂ ∈ σ̂(â)), which results in the abstract value v̂. In consequence, because

the abstract address â is read, rule var needs to generate an abstract read effect. Rule lambda

remains unmodified as no effects need to be generated; for this reason, the rule is omitted.

λε

â = ρ̂(x) v̂ ∈ σ̂(â)

ρ̂, σ̂ ` x ⇓̂
r(â)

v̂
var

Figure 4.2.: Modified abstract atomic evaluation rules for λε.

4.1.3. Abstract Sequential Transition Relation

The abstract sequential transition relation for λε is depicted in Figure 4.3. For each rule, the

generated effects are written underneath the transition arrow. Since this notation becomes

slightly unpractical when multiple effects are generated by the execution of a transition rule,

we sometimes use a shorthand notation, annotating the transition arrow with a set of effects.

Again, rules that do not generate effects have been omitted.

47

4. An Incremental Thread-Modular Analysis for λα

λε

ρ̂, σ̂ ` ae ⇓̂
êff

v̂

〈ev(ae, ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→
êff
〈val(v̂), k̂〉, σ̂, Ξ̂

atomic-evaluation

arg(v̂ f , k̂′) ∈ Ξ̂(k̂) v̂ f = clo(lam, ρ̂) lam = (λ(x) e) â = âlloc(v̂a, σ̂)

〈val(v̂a), k̂〉, σ̂, Ξ̂ ↪̂−→
w(â)
〈ev(e, ρ̂[x 7→ â]), k̂′〉, σ̂ t [â 7→ {v̂a}], Ξ̂

appl-body

bnd(x, eb, ρ̂, k̂′) ∈ Ξ̂(k̂) â = âlloc(v̂x, σ̂)

〈val(v̂x), k̂〉, σ̂, Ξ̂ ↪̂−→
w(â)
〈ev(eb, ρ̂[x 7→ â]), k̂′〉, σ̂ t [â 7→ {v̂x}], Ξ̂

letrec-body

â = âlloc(ae, σ̂) ρ̂, σ̂ ` ae ⇓̂
êff

v̂

〈ev((atom ae), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→
êff

w(â)

〈val(atom(â)), k̂〉, σ̂ t [â 7→ v̂], Ξ̂
atom

ρ̂, store ` ae ⇓̂
êff

atom(â) v̂ ∈ σ̂(â)

〈ev((read ae), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→
êff

r(â)

〈val(v̂), k̂〉, σ̂, Ξ̂
read

ρ̂, σ̂ ` aea ⇓̂
êff a

atom(â) ρ̂, σ̂ ` aev ⇓̂
êff v

v̂ E = {êff a, êff v, w(â)}

〈ev((reset! aea aev), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→
E
〈val(v̂), k̂〉, σ̂ t [â 7→ v̂], Ξ̂

reset

ρ̂, σ̂ ` aea ⇓̂
êff a

atom(â) ρ̂, σ̂ ` aeold ⇓̂
êff old

v̂old ρ̂, σ̂ ` aenew ⇓̂
êff new

v̂new

v̂curr ∈ σ̂(â) v̂curr = v̂old E = {êff a, êff old, êff new, r(â), w(â)}
〈ev((compare-and-set! aea aeold aenew), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→

E
〈val(#t), k̂〉, σ̂ t [â 7→ v̂new], Ξ̂

cas-t

ρ̂, σ̂ ` aea ⇓̂
êff a

atom(â) ρ̂, σ̂ ` aeold ⇓̂
êff old

v̂old ρ̂, σ̂ ` aenew ⇓̂
êff new

v̂new

v̂curr ∈ σ̂(â) v̂curr 6= v̂old E = {êff a, êff old, êff new, r(â)}
〈ev((compare-and-set! aea aeold aenew), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→

E
〈val(#f), k̂〉, σ̂, Ξ̂

cas-f

ρ̂, σ̂ ` aea ⇓̂
êff a

atom(â) v̂old ∈ σ̂(â) ρ̂, σ̂ ` ae f ⇓̂
êff f

v̂ f

v̂ f = clo(lam, ρ̂ f) lam = (λ(x) e) φ̂ = swp(atom(â), v̂old, k̂, v̂ f)

â′ = âlloc(v̂old, σ̂) k̂′ = k̂alloc(e, ρ̂ f , σ̂, Ξ̂) E = {êff a, êff f , r(â), w(â′)}
〈ev((swap! aea ae f), ρ̂), k̂〉, σ̂, Ξ̂ ↪̂−→

E
〈ev(e, ρ̂ f [x 7→ â′]), k̂′〉, σ̂ t [â′ 7→ v̂old], Ξ̂ t [k̂′ 7→ φ̂]

swap

48

4.1. λε, a Formalisation of Thread Interference for λα

λε

swp(atom(â), v̂old, k̂′, v̂ f) ∈ Ξ̂(k̂) v̂curr ∈ σ̂(â) v̂curr = v̂old

〈val(v̂), k̂〉, σ̂, Ξ̂ ↪̂−→
r(â)
w(â)

〈val(v̂), k̂′〉, σ̂ t [â 7→ v̂], Ξ̂
swap-succeed

Ξ̂(k̂) = swp(atom(â), v̂old, k̂′, v̂ f) v̂curr ∈ σ̂(â)
v̂curr 6= v̂old φ̂ = swp(atom(â), v̂curr, k̂′, v̂ f) v̂ f = clo(lam, ρ̂ f)

lam = (λ(x) e) â′ = âlloc(v̂curr, σ̂) k̂′′ = k̂alloc(e, ρ̂ f , σ̂, Ξ̂)

〈val(v̂), k̂〉, σ̂, Ξ̂ ↪̂−→
r(â)

w(â′)

〈ev(e, ρ̂ f [x 7→ â′]), k̂′′〉, σ̂ t [â′ 7→ v̂curr], Ξ̂ t [k̂′′ 7→ φ̂]
swap-fail

Figure 4.3.: Modified abstract sequential transition rules for λε.

Rule atomic-evaluation stipulates that the effects of the atomic evaluation relation are trans-

ferred to the sequential evaluation relation. Next, in rules appl-body and letrec-body, an address

in the store is modified. Hence, write effects need to be generated. It may also be the case that

multiple effects need to be generated by a single rule. For example, in rule atom, the effects

resulting from the atomic evaluation as well as a write effect must be generated; we have chosen

to explicitly denote all effects for completeness. Since the (abstract) sequential transition rules

only operate on a single thread, no create or dereferencing effects are generated.

4.1.4. Abstract Concurrent Transition Relation

The abstract concurrent transition relation for λε is depicted in Figure 4.3. Again, for each

rule, the effects generated by the execution of that rule are written underneath the concurrent

transition arrow and rules that do not generate effects have been elided.

λε

ς̂ ∈ π̂(p̂) ς̂, σ̂, Ξ̂ ↪̂−→
êff

ς̂′, σ̂′, Ξ̂′

π̂, σ̂, Ξ̂ ̂ p̂
êff

π̂ t [p̂ 7→ ς̂′], σ̂′, Ξ̂′
sequential-step

〈ev((future e), ρ̂), k̂〉 ∈ π̂(p̂) ς̂ = 〈ev(e, ρ̂), k̂0〉 p̂′ = p̂alloc(ς̂, π̂)

π̂, σ̂, Ξ̂ ̂ p̂
c(p̂′)

π̂ t [p̂ 7→ 〈val(fut(p̂′)), k̂〉, p̂′ 7→ ς̂], σ̂, Ξ̂
future

〈ev((future-call ae), ρ̂), k̂〉 ∈ π̂(p̂) ρ̂, σ̂ ` ae ⇓̂
êff

v̂ f v̂ f = clo(lam, ρ̂ f)

lam = (λ(x) e) ς̂ = 〈ev(e, ρ̂ f), k̂0〉 p̂′ = p̂alloc(ς̂, π̂)

π̂, σ̂, Ξ̂ ̂ p̂
êff

c(p̂′)

π̂ t [p̂ 7→ 〈val(fut(p̂′)), k̂〉, p̂′ 7→ ς̂], σ̂, Ξ̂
future-call

49

4. An Incremental Thread-Modular Analysis for λα

λε

〈ev((deref ae), ρ̂), k̂〉 ∈ π̂(p̂) ρ̂, σ̂ ` ae ⇓̂
êff f

fut(p̂′) 〈val(v̂), k̂0〉 ∈ π̂(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂
êff f

d(p̂′)

π̂ t [p̂ 7→ 〈val(v̂), k̂〉], σ̂, Ξ̂
deref

Figure 4.4.: Modified abstract concurrent transition rules for λε.

By means of rule sequential-step, the effects generated by the abstract sequential transition rela-

tion are carried over to the abstract concurrent transition relation. As opposed to the sequential

transition relation of λε, the annotated concurrent transition relation can also generate creation

and dereferencing effects. The reason for this is obvious: creation and dereferencing effects are

generated when futures are respectively created or dereferenced, and this is taken care of by

the (abstract) concurrent transition relation.

4.2. A Non-Incremental Thread-Modular Analysis Algorithm for λα

Based on the formalisation of effects in Section 4.1, we can now describe an algorithm for

the thread-modular abstract interpretation of λα (λε). This algorithm is adapted from the one

described by Stiévenart (2018, Chapter 6) and serves as the basis for our own incremental

algorithm, described in Section 4.3.

The analysis algorithm, shown in Algorithm 1, consists out of two alternating phases, an intra-

process analysis phase and an inter-process analysis phase. The former analyses a single

abstract process in isolation and accumulates the effects generated by the transition function;

the latter uses the effects inferred by the intra-process analysis phase to decide on the threads

that need to be (re-)analysed next. Both analysis phases are fixed-point computations. We now

discuss this algorithm in detail and prove termination. Note that in Algorithm 1, we have omitted

the abstraction hats for brevity and readability. Also, since the algorithm is modular, there is

a slight divergence between the algorithm and λε’s formalisation. After all, the concurrent

transition function for λε formalises a non-modular analysis. In a modular analysis, there is

no need for a thread map that is continuously updated since threads are analysed in isolation.

Therefore, π is only used to relate abstract thread identifiers to abstract initial states and is

omitted as an argument to palloc. As a consequence, we can use the sequential injection

function inject. We refer to Stiévenart (2018, Chapter 6) for the formalisation of the algorithm.

Henceforth, we may refer to the modular analysis described in Algorithm 1 as ModAtom.

4.2.1. State Injection

To analyse an expression, the expression is first injected into an initial state (line 45, see also

Section 3.1.4). Then, a thread identifier for the main thread is allocated and the initial state of the

main thread is added to π, a data structure mapping thread identifiers to sets of initial states.

(Note that for every thread identifier, multiple initial states may be present in π since every

thread identifier may be allocated multiple times.) Then, the inter-process analysis is started

with a work list containing the thread identifier just allocated.

50

4.2. A Non-Incremental Thread-Modular Analysis Algorithm for λα

Algorithm 1 Non-incremental thread-modular static program analysis

procedure analyse(e: Exp)

π← [] . Maps thread identifiers to sets of initial states.

returnValues← [· · · 7→ ⊥] . Maps thread identifiers to return values.

graphs← [] . Holds the produced state graphs.

5: effects← [] . Collects the generated effects.

procedure intra(p : PID, σ : Store, Ξ : KStore) . Intra-process analysis.

graphs.set(p, [])

work← List[π.get(p)] . Start the analysis from the initial thread state(s).

10: visited← []

effects← []

result←⊥ . The abstract return value is part of a lattice.

while work not empty do

ς← work.serve()

15: if visited.contains(ς) then

continue

end if

(successors, effs, σ′, Ξ′, res)← transition(ς, σ, Ξ) . Apply the transition function.

if σ equals σ′ ∧ Ξ equals Ξ′ then

20: visited.add(ς)

else

visited← [] . Upon a store change, the visited set must be emptied.

end if

work.add(successors)

25: graphs(p).removeEdges(ς).addEdges(ς, successors) . Update outgoing edges of ς.

effects.add(effs)

result← result t res
(σ, Ξ)← (σ′, Ξ′)

end while

30: return (effects, σ, Ξ, result) . Returns generated effects, updated stores and return value.

end procedure

procedure inter(work: List[PID], σ: Store, Ξ : KStore) . Inter-process analysis.

while work not empty do

35: p← work.serve()

(effs, σ′, Ξ′, ret)← intra(p, σ, Ξ) . Perform an intra-process analysis for this thread.

todo← processEffects(p, effects, effs, σ, σ′, ret) . Compute the threads to analyse next.

work.add(todo)

effects.add(p, effs)
40: returnValues.set(p, ret)

(σ, Ξ)← (σ′, Ξ′)
end while

end procedure

45: initial← inject(e) . Inject the program into an initial state.

p← palloc(initial)

π.add(p, initial)

inter(List[p], [], [k0 7→ halt]) . Start the inter-process analysis.

return graphs

50: end procedure

51

4. An Incremental Thread-Modular Analysis for λα

4.2.2. Inter-Process Analysis Phase

The inter-process analysis contains in its work list (work) a list of abstract thread identifiers of

the threads that need to be analysed. For every abstract thread identifier in the list, the intra-

process analysis is run, which returns a set of generated effects, an updated store, an updated

continuation store and the abstract return value of the analysed thread. Based on these effects

and on the new store and return value, the procedure processEffects determines which threads

need to be analysed next (line 37). Then, the thread identifiers collected in todo are added to the

work list work (line 38), the generated effects effs are added to effects (line 39), the thread’s

return value is stored (line 40) and the stores are updated (line 41). When the generated effects

effs are added to effects (line 39), they are tupled together with the thread identifier p; this

allows to correlate effects to the thread that generated them, which is used in the function

processEffects. Finally, if the work list is not empty, a new iteration starts; the work list will only

become empty when a fixed point is reached and no threads need to be analysed anymore.

The procedure processEffects is outlined in Algorithm 2. Note that we assume that process-

Effects has access to the local scope of the procedure analysis of Algorithm 1. processEffects

uses the generated effects as follows:

• processEffects first scans the newly generated effects effs for creation effects and adds

the thread identifiers of the created threads to todo; the corresponding initial thread states

are added to π. However, this only happens if an identical initial state was not yet present

in π for the given thread identifier, since in the other case, the thread already exists (lines

3 to 6).

• processEffects checks the addresses written to by p and then verifies for which of these

addresses the value stored in the updated store differs from the value in the original store

since not every write leads to a changed abstract value stored at the respective address. For

each of the addresses where the stored value is different, processEffects uses all read and

write effects generated so far by other abstract threads to determine possible read-write

and write-write conflicts. All abstract threads reading or writing an address the current

thread has modified must be reanalysed and are added to todo. The procedure getPID
is used, which retrieves the abstract thread identifier that was tupled with the effect; this

thread identifier denotes the abstract thread that generated the effect, and hence indicates

which abstract thread should be reanalysed (lines 7 to 14).

• When the return value ret of the thread p has changed, processEffects scans all effects

for dereferencing effects with thread identifier p and adds all threads that have generated

such an effect to todo; since these threads depend on that return value, they must be

reanalysed (lines 15 to 21).

Finally, processEffects returns the abstract thread identifiers of the abstract threads that must

be reanalysed, which is the union of newThreads, conflictedThreads and returnConflicts
(line 22).

4.2.3. Intra-Process Analysis Phase

The intra-process analysis analyses the thread(s) related to an abstract thread identifier in iso-

lation. While doing so, it builds the abstract state graph for the corresponding thread identifier.

To this end, first, the initial states related to the thread identifier are retrieved and added to the

work list. Like the inter-process analysis phase, the intra-process analysis phase is a fixed-point

computation. To avoid duplication of work and ensure termination, a visited set visited is

52

4.2. A Non-Incremental Thread-Modular Analysis Algorithm for λα

Algorithm 2 Effect processing for the non-incremental program analysis algorithm

procedure processEffects(p : PID, effs : Effects, newEffs : Effects, σ : Store, σ′ : Store, ret : Val)
allEffs← effs + newEffs

newThreads← . Thread identifiers of new threads.

newEffs.creationEffects . Get the creation effects. . .
5: .filter(exists, π) not corresponding to existing threads.. . .

.map(getPID) and return the corresponding thread identifiers.

addressesWritten← newEffs.writeEffects.map(getAddress)

addressesChanged← . Addresses whose values were modified.

addressesWritten.filter(a→ σ(a) 6= σ′(a))
10: conflictedThreads←

(allEffs.readEffects + allEffs.writeEffects) . Take all read and write effects. . .
.filter(e→ e.getPID 6= p) generated by other threads. . .
.filter(e→ e.getAddress ∈ addressesChanged) that cause conflicts. . .
.map(getPID) and return the affected threads.

15: if ret 6= returnValues(p) then

returnConflicts←
effs.dereferencingEffects.filter(e→ e.getPID = p)

.map(getPID) . Threads that read p’s return value.

else

20: returnConflicts← []

end if

return newThreads + conflictedThreads + returnConflicts

end procedure

instantiated (line 10). Initially, this set is empty. The intra-process analysis also keeps track of

the return value of the thread. Due to nondeterminism in the analysis, it is possible that multiple

return values are found. Therefore, the accumulator for the return value of the thread under

analysis is initialised to bottom (⊥, line 12) and every time a return value is encountered during

the analysis, this value is joined together with the accumulator (line 27).

The fixed-point computation successively pops a state of the work list and verifies that it is not

in the visited set; if it is, the state is ignored. Otherwise, the transition function is applied to the

state, i.e., the state is stepped, using the current store σ and the current continuation store Ξ.

The result of the transition function is a set of successor states (successors), a set of generated

effects (effs), an updated store (σ′) and an updated continuation store (Ξ′, line 18). Also, a

return value (res) may be generated when the state is a final state. If not, res is set to bottom,

which is the neutral element for join.

Since the store σ and continuation store Ξ are not contained in the states themselves, the visited

set needs to be cleared whenever one of the stores changes (lines 19 to 23). To see why, consider

the transition function transition. This function steps a given state under a given store and

continuation store. Hence, if one of the stores changes, this may have an influence on the result

of transition. This is problematic since the visited set contains the states of which we ought to

have computed the result already. Therefore, since the result may be different now, the visited

set must be cleared. Hence, if a state that has been removed from the visited set is added to the

work list again, it will be reanalysed.

Finally, the work list is updated, the effects are stored and the result and stores are updated. In

addition, the state graph of the analysed thread is extended with edges from the transitioned

state ς to its successor state(s) (line 25). However, before doing so, the edges previously going

53

4. An Incremental Thread-Modular Analysis for λα

out ς are removed since they represent computations based on outdated information. Also,

since in the intra-analysis phase, a thread is analysed from scratch, the thread’s state graph is

erased at the beginning of the intra-process analysis (line 8).

4.2.4. Termination

The algorithm for non-incremental modular analysis relies on two alternating phases that are

expressed by means of a fixed-point computation. We will now show that our formulation of

the computation, as expressed by Algorithm 1, terminates. We refer to Appendix B.1 for the

complete proofs of following lemmas and of the following theorem. For clarity, the proofs in

this appendix are numbered the same as the corresponding lemmas and theorems in this text.

Lemma 1. Consider an abstract value store σ̂. After a finite number of updates of σ̂, a fixed-point is

reached.

Proof concept. We prove Lemma 1 by proving that updating a specific address â in the store σ̂
only leads to a change in the stored value a finite number of times.

Lemma 1 is related to an important concept in static analysis called store monotonicity, which

is required for a sound analysis. The abstract store σ̂ maps addresses to sets of abstract values.

Upon an update to the store, only elements can be added to such sets. Consider now the Hasse

diagram of the set lattice of P(V̂al), then every update to the address â in σ̂ will cause the set

related to â in σ̂ to be least as close to> as the set originally residing at that address in the store.

An updated set will never be closer to ⊥ than the set that was not updated. Therefore, it is said

that updates to the store are monotonous. Intuitively, this means that information cannot get

lost, which is important if we want to obtain a sound analysis.

Lemma 2. Consider an abstract continuation store Ξ̂. After a finite number of updates of Ξ̂, a fixed-point

is reached.

Proof concept. Similar to the proof of Lemma 1.

Lemma 3. The intra-process analysis of a process in Algorithm 1 terminates.

Proof concept. We show that the intra-process analysis terminates by showing that at a given

moment, all states that can be generated must be in the visited set, which is the condition for

the algorithm to terminate.

Theorem 1. The process-modular analysis of a program e in Algorithm 1 terminates.

Proof concept. We show that the inter-process analysis terminates by proving that the intra-

process analysis must only be called a finite number of times.

4.3. Incrementalising the Thread-Modular Analysis Algorithm for λα

In the previous section, we presented an algorithm to perform a thread-modular analysis of λε.

This algorithm starts by performing an intra-process analysis of the main thread. Every time

54

4.3. Incrementalising the Thread-Modular Analysis Algorithm for λα

an intra-process analysis is run, the algorithm collects the effects generated by that analysis to

decide on the threads for which the intra-process analysis must be (re-)run. When a fixed-point

is reached, the alternation of these analysis phases stops and the graph representing the abstract

collecting semantics has been computed.

The presented algorithm may not be entirely efficient however. Every time a thread interference

is detected, the affected thread is entirely reanalysed from its initial state. Yet, not all states in the

computed state graph may be affected by this interference and performing an entire reanalysis

of that thread may result in a loss of precision. To understand why not all states may be affected,

consider the program in Listing 4.1. This program computes the 6th
Fibonacci number using a

parallel computation. ModAtom, the modular analysis described in Algorithm 1, analyses this

program according to following rough outline:

1. The main thread is analysed by the intra-process analysis. First, the binding of the letrec

is analysed, resulting in a closure that is bound, via the store, to the variable fibonacci.
Then, the call (fibonacci 6) is analysed. When the body of the function is analysed, the

transition function generates a creation effect due to the call to future in line 4. Later,

the return value of this future is read in line 7, which causes a dereferencing effect to

be generated by the transition function. Since the newly created thread has not yet been

analysed, the return value found for that thread is ⊥ and the analysis of the main thread

continues with this value.

2. The inter-process analysis processes the effect generated by the intra-process analysis and

finds a creation effect. This causes the intra-process analysis to be called for the analysis

of the new child thread in which the call (fibonacci (- n 2)) is analysed.

3. When the intra-process analysis is finished with the evaluation of the child thread, it

finds that its return value no longer is bottom and hence has changed. It scans the effects

generated so far and finds that the main thread reads the thread’s return value. Since this

value has changed, the main thread must be reanalysed since it depends on the new value.

In summary, the main thread is analysed twice and the child thread is analysed once. Note that

there is only one child thread that needs to be analysed, which is a consequence of the definition

of p̂alloc (see Section 3.2.3): the analysis cannot differentiate between the different child threads

and will consider them to be one and the same. Also, a loss of precision may arise due to the

fact that ModAtom does not keep track of the order in which the effects are generated by the

abstract threads: the collected effects are passed to processEffects in an unordered set.

1 (letrec ((fibonacci (lambda (n)
2 (if (<= n 1)
3 n
4 (letrec ((fut (future (fibonacci (- n 2)))))
5 (letrec ((v1 (fibonacci (- n 1))))
6 (+ v1
7 (deref fut))))))))
8 (fibonacci 6))

Listing 4.1: Parallel computation of the nth
Fibonacci number.

Due to the change in return value of the child thread, in step 3, the main thread is reanalysed.

However, when a thread is reanalysed, it is reanalysed in its entirety. Yet, the change in return

value does not influence the entire computation of the main thread; only when the return value

of the child thread is read (line 7), the remaining part of the analysis may be influenced. Hence,

up to the point where the return value of the child thread is read, there is no influence on the

55

4. An Incremental Thread-Modular Analysis for λα

analysis result. The same principle is true for read-write and write-write conflicts.

In the remaining part of this section, we first introduce a new algorithm that incrementalises the

computation of the intra-process analysis so that, upon reanalysis of a thread, previous analysis

results can be reused, that is, we aim to reuse as much as possible of the thread’s previously

computed abstract state graph. This way, we avoid the needless repetition of work and aim at

decreasing the time needed by the analysis. After having introduced this new algorithm, we

present some optimisations that may further reduce the time needed by the analysis.

4.3.1. General Approach

The goal of this incrementalisation is to alter the intra-process and the inter-process analyses

so that the intra-process analysis need not start from a thread’s initial state upon reanalysis

anymore. Instead, the intra-process analysis should restart from the states whose evaluation

is influenced by another abstract thread. Since the intra-process analysis must not start its

analysis from the abstract thread’s initial state, it avoids the recomputation of non-affected

states. However, the intra-process analysis may still need to recompute some of these states

when there is a back edge present in the abstract state graph. The reason for this is that the

analysis performs a fixed-point computation and that a thread’s reanalysis is started with an

empty visited set.

To see how ModAtom can be altered, we first look at how the algorithm decides which threads to

reanalyse. After the execution of an intra-process analysis, the effects generated by that analysis

are processed by processEffects and added to effects, the collection of all generated effects

(Algorithm 1, line 39). However, effects does not only keep track of the generated effects but

also relates these abstract effects to the abstract thread identifier of the abstract thread that

generated them, that is, it stores effects êff as tuples 〈êff , p̂〉, where p̂ is the abstract thread

identifier of the abstract thread that generated the abstract effect. This way, whenever an effect

of interest is found, it can be related to the thread that generated the effect and hence, it is

known which thread is to be reanalysed. For example, if the return value of an abstract thread p̂
changes, processEffects will look for dereferencing effects containing p̂, and the abstract thread

identifier tupled with this effect denotes the abstract thread to be reanalysed.

To incrementalise the intra-process analysis, the reanalysis of a thread must start from the state

whose evaluation was influenced. To do so, we alter this tracking behaviour so that effects are

not just related to thread identifiers anymore, but also to abstract states, that is, it now stores

effects as triples 〈êff , p̂, ς̂〉, where p̂ is the thread identifier of the thread that generated the effect

and ς̂ is the state whose evaluation is affected. As a result, whenever processEffects scans the

set of generated effects and finds an effect of interest, it can now determine from which state

the analysis of a given thread must be restarted.

Having presented our strategy to incrementalise the intra-process analysis of ModAtom, we

can now discuss our incremental algorithm, shown in Algorithm 3; we henceforth may refer

to this analysis as IncAtom. The algorithm is structured analogously to Algorithm 1; the most

important changes are indicated in red. We now discuss IncAtom, focussing on the aspects of

the analysis algorithm that are specific to the incremental algorithm.

56

4.3. Incrementalising the Thread-Modular Analysis Algorithm for λα

Algorithm 3 Incremental thread-modular static program analysis

procedure analyse(e: Exp)

π← []

returnValues← [· · · 7→ ⊥]
graphs← []

5: effects← []

procedure intra(ς : Σ, p : PID, σ : Store, Ξ : KStore) . Intra-process analysis.

graphs.set(p, [])

work← List[ς] . Start the analysis from the given state.

10: visited← []

effects← []

result←⊥
while work not empty do

ς← work.serve()

15: if visited.contains(ς) then

continue

end if

(successors, effs, σ′, Ξ′, res)← transition(ς, σ, Ξ)

if σ equals σ′ ∧ Ξ equals Ξ′ then

20: visited.add(ς)

else

visited← []

end if

work.add(successors)

25: graphs(p).removeEdges(ς).addEdges(ς, successors)

effects.add(p, ς, effs) . Effects are now related to states.

result← result t res
(σ, Ξ)← (σ′, Ξ′)

end while

30: return (effects, σ, Ξ, result)

end procedure

procedure inter(work: List[〈PID, Σ〉], σ: Store, Ξ : KStore) . Inter-process analysis.

while work not empty do

35: 〈p, ς〉 ← work.serve()

(effs, σ′, Ξ′, ret)← intra(p, ς, σ, Ξ)

todo← processEffects(p, effects, effs, σ, σ′, ret)

work.add(todo)

effects.add(effs)
40: returnValues.set(p, ret t returnValues.get(p)) . Join the new and old return values.

(σ, Ξ)← (σ′, Ξ′)
end while

end procedure

45: initial← inject(e) . Inject the program into an initial state.

p← palloc(initial)

π.add(p, initial)

inter(List[〈p, initial〉], [], [k0 7→ halt]) . Start the inter-process analysis.

return graphs

50: end procedure

57

4. An Incremental Thread-Modular Analysis for λα

4.3.2. Inter-Process Analysis Phase

The work list of the inter-process analysis now contains tuples of abstract thread identifiers

and abstract states. The state indicates where the intra-process analysis of the given process

should start; the corresponding thread identifier identifies the thread the state belongs to. For

every tuple in the list, the intra-process analysis is run; this returns a set of generated effects,

an updated store, an updated continuation store and the abstract return value of the analysed

thread.

Since the intra-process analysis may only have reanalysed part of the thread’s state graph, it may

not have reanalysed all of the thread’s final states. For this reason, the new and old return values

need to be joined, since the value returned by the intra-process analysis only over-approximates

the return values that were found during reanalysis. Otherwise the result may not be sound

(line 40). Another solution to this problem would be to set the initial result value of a thread in

the intra-process analysis to the value stored in returnValues, that is, to modify line 12. Since

a thread can logically never rely on its own return value, this is a mere implementation issue

which does not influence the result of the analysis. Hence, both implementations will produce

the same result.

In the non-incremental algorithm, the inter-process analysis related every effect returned by the

intra-process analysis together with its thread identifier (line 39). However, in the incremental

algorithm, every effect must be related to an abstract thread identifier and an abstract state.

Therefore, this now happens in the intra-process analysis; the effects returned by the intra-

process analysis are already tupled together with an abstract thread identifier and an abstract

state. However, the inter-process analysis still has to determine for which states the intra-process

analysis must be started by means of processEffects; for brevity, we do not present an updated

version of processEffects since only minor modifications are required.

4.3.3. Intra-Process Analysis Phase

The intra-process analysis does not require a lot of change. The analysis now takes an extra

parameter as argument, which is the state the analysis has to be started from. ModAtom always

starts from the thread’s initial state, but this is what we now try to avoid.

Except for the start of the analysis, it works analogously to its non-incremental counterpart.

However, the intra-process analysis must now also relate the generate effects to the state which

transition caused the effect. After all, such an effect indicates a dependency related to the

evaluation of that state.

4.3.4. Termination

Now we have obtained an incremental version of Algorithm 1, we show that this new algorithm

still terminates. Lemmas 1 and 2 do not require modification, as they are only related to the

behaviour of the abstract value and continuation stores. However, Lemma 3 and Theorem 1 are

specific to the non-incremental analysis. Therefore, we must again prove the termination of the

intra-process and inter-process analysis phases.

Lemma 4. The intra-process analysis of an abstract thread in Algorithm 3 terminates.

Proof. Analogous to the proof of Lemma 3, but the intra-process analysis now starts from a

58

4.4. Optimisations

given abstract state ς̂, instead of from the abstract thread’s initial state. However, this does not

impact the termination argument given in the proof of Lemma 3.

Theorem 2. The incremental process-modular analysis of a program e in Algorithm 3 terminates.

Proof. The proof of this theorem is analogous to the proof of Theorem 1; the fact that the intra-

process analysis now is started from a given abstract state does not invalidate the termination

argument.

4.3.5. Soundness

In Section 2.1, we imposed soundness as a requirement for the analyses presented in this

dissertation. Stiévenart (2018) has already shown soundness for ModAtom, the analysis on

which IncAtom is based. We do not formally proof soundness of IncAtom, as we did for its

termination, but refer to Chapter 6 for an empirical evaluation of the soundness of IncAtom

instead.

4.4. Optimisations

IncAtom, described in Algorithm 3, incrementalises the intra-process analysis phase of the

process-modular analysis algorithm. In this section, we will discuss some changes to this algo-

rithm that may further improve its performance, that is, lower the analysis time. In addition,

we discuss the applicability of these optimisations to ModAtom.

4.4.1. Visited Set Caching

Whenever an intra-process analysis of an abstract thread p̂ is started, this is done so with an

empty visited set, both in ModAtom (Algorithm 1) as well as in IncAtom (Algorithm 3). For

ModAtom, the visited set is always discarded because the entire thread must be reanalysed. On

the contrary, for Algorithm 3, discarding the visited set may not be the best option. The reason

for this is that, during reanalysis of p̂, states may be generated that were already computed

during the previous execution of the intra-process analysis of p̂. Hence, when the reanalysis is

started with an empty visited set, previously computed parts of p̂’s abstract state graph may

need to be computed again, resulting in a duplication of work that may needlessly slow down

the static analyser.

To remedy this issue and to avoid duplication of work by IncAtom, it is possible to cache the

visited set, which fits our goal of reusing as much of the previously calculated result as possible.

Hence, whenever the intra-analysis of an abstract thread is restarted, the cached visited set can

be restored. This optimisation is only applicable to IncAtom; it cannot be applied to ModAtom

as this algorithm always reanalyses a thread in full and hence restarts the analysis of a thread

with an empty visited set.

There are several possible points in the execution of the intra-process analysis where the visited

set may be cached: the visited set may be cached whenever an effect is generated by p̂ (it becomes

then related to that effect), or that the end of the intra-process analysis, when all effects have

been generated (it becomes then related to all effects). We think however that both strategies will

59

4. An Incremental Thread-Modular Analysis for λα

result in a similar performance, since we have identified one important restriction to caching

the visited set: whenever the store or continuation store is modified, the visited set must be

invalidated or ignored, that is, a visited set may only be reused when there has been no store

change between the moment it was saved and the moment it was restored. The reason for this

was already explained in Section 4.2.3, where we discussed the clearance of the visited set: since

a change in the store may impact the result of transition, we can no longer be sure that we

obtained the correct successor states of the states in the visited set.

The condition that the store must remain unchanged may limit the number of times a cached

visited set can actually be restored and hence also the gains that can be realised by the visited

set caching technique. After all, all reanalyses triggered by a write effect cannot benefit from

the cached visited set. Hence, the performance gain obtained by the caching of the set may be

small; we refer to Chapter 6 for an evaluation of this optimisation.

4.4.2. Intra-Process Analysis Abortion

In the beginning of Section 4.3, we explained how the non-incremental thread-modular analysis

algorithm analyses a simple parallel program that computes the nth
Fibonacci number. In a first

step, the abstract main thread is analysed. During the abstract interpretation of this thread, the

return value of the abstract child thread that was spawned is read. However, since that thread

had not been analysed yet, ⊥ is used as a placeholder for the child thread’s return value in the

remainder of the analysis of the main thread.

The use of bottom as the placeholder of an abstract thread’s abstract return value allows the

analysis of other abstract threads to continue even when they reference an unanalysed abstract

thread. When an abstract thread has been analysed, its return value is updated and will differ

from bottom; only when an abstract thread has not been analysed yet, its return value will

equal bottom. At the point where an abstract return value is read, a dereferencing effect is

generated; this effect indicates a dependency between the two abstract threads and causes the

dereferencing thread to be reanalysed when the return value of the dereferenced thread changes.

In our incremental algorithm, the thread will be reanalysed from the point where the modified

return value is read.

The key to seeing how this analysis scheme can be optimised is to note that there is no point

in continuing the analysis of an abstract thread when it has read ⊥ as the abstract return value

of another thread. After all, this implies that the dereferenced thread has not been analysed

yet. As a result, the inter-process analysis will analyse the dereferenced thread and then restart

the analysis of the dereferencing thread from the point where it reads the new abstract return

value. Hence, since the abstract thread will have to be reanalysed from that point on in any

case, it makes no sense to complete the first analysis using ⊥ as the placeholder for the missing

abstract return value. Therefore, when bottom is read as the return value of an abstract thread,

the intra-process analysis can be aborted. However, it is important for the dereferencing effect to

be generated, since otherwise, the dereferencing thread will not be reanalysed anymore when

the return value of the dereferenced thread has been computed.

As both ModAtom and IncAtom have a similar structure, both algorithms may encounter

situations where they read ⊥ as the return value of an abstract thread, as was explained above.

Therefore, this optimisation is applicable to both algorithms.

60

4.5. General Considerations

4.5. General Considerations

For completeness, we now briefly discuss some general remarks regarding the two presented

algorithms.

4.5.1. Filtering the Abstract State Graph

During the intra-process analysis, an abstract state graph is built for each abstract thread. This

state graph is the thread’s abstract collecting semantics (see Section 2.2.2).

During the fixed-point computation performed by the intra-process analysis, an abstract state

may need to be analysed multiple times, to ensure soundness. Hence, every time the state is

analysed, the transition function produces a set of successor states of that state. In Algorithm 1,

this happens on line 18:

(successors, effs, σ′, Ξ′, res)← transition(ς, σ, Ξ)

In the abstract state graph, the abstract state that was analysed must now become connected to

its successor states. However, the graph may already contain outgoing edges for that abstract

state, resulting from a prior analysis. Since these edges may represent outdated information,

they are first removed before edges connecting the abstract state to its successor states are added.

In Algorithm 1, this happens on line 25 as follows:

graphs(p).removeEdges(ς).addEdges(ς, successors)

However, removing edges going out of a state may result in states that are present in the

abstract state graph of an abstract thread, but that are not reachable from that abstract thread’s

initial state. This is caused by the fact that, upon reanalysis, different successor states may be

generated when more information is available or precision is lost; the set of new successor states

over-approximates the set of successor states generated earlier.

Consider for example the abstract state graph of an abstract thread pA in Figure 4.5 (note that we

have omitted the abstraction hats in the figure) and suppose the abstract thread pA is analysed

by our incremental thread-modular analysis. In state s1a, the thread reads the abstract return

value of abstract thread, pB. Since this thread has not been evaluated yet, bottom is read and

the analysis of pA is continued along the blue path. After the analysis of the abstract thread pB,

the incremental algorithm restarts the analysis of pA from state s1a, but now reads true as the

pB’s return value; the analysis now continues along the orange path. However, before an edge

is added from state s1a to state s2b, first all previously outgoing edges from state s1a are cut. In

this case, states s2a and s3a become unreachable from state s0. Unfortunately, it is non-trivial to

just remove these states from the graph, since, in general, there may still be another path from

s0 to any of these states.

To avoid the analysis returning graphs in which such unreachable states occur, a filtering

pass is needed after the inter-process analysis terminates. For clarity and conciseness, we have

omitted this pass in our definition of Algorithm 1 and Algorithm 3. For each abstract thread,

the filtering pass traverses the thread’s abstract state graph and stores and copies all states

and edges encountered during the traversal. As a result, states that are not reachable from the

abstract thread’s initial state are removed from the thread’s abstract state graph.

Note that although we have given an example using the incremental thread-modular algorithm,

61

4. An Incremental Thread-Modular Analysis for λα

Figure 4.5.: Example of unreachable states in an abstract thread’s abstract state graph.

the problem also arises for the non-incremental thread-modular algorithm, for example when

the graph contains a back-edge. After all, all edges going out from a state that is recomputed

must be invalidated since they represent computations based on outdated information.

4.5.2. Thread-Local Continuation Stores

For simplicity and conciseness, we have formalised λα (λε), as well as our algorithms for the

(non-)incremental thread-modular analysis of this language, using a value store and continua-

tion store that were shared among all threads, that is, the value store and continuation store are

not part of the states ς (for λ0), nor are they part of the thread maps π (for λφ and λα). Not incor-

porating the stores into the states themselves, but keeping them separate, is called global-store

widening and is used to reduce the worst-case time complexity of the analysis at the cost of a

lower precision (Shivers, 1991; Van Horn & Might, 2012; Stiévenart, 2018). The loss in precision

arises from the fact that a store is no longer correlated to a specific state, but over-approximates

all information stored so far in the analysis.

A continuation store shared among all abstract threads may have a negative impact on precision

as there is no way to distinguish continuation frames stored by one abstract thread from the

ones that were stored by another. Hence, when such an abstract thread looks up an abstract

continuation address in the continuation stores, it may also retrieve continuation frames that it

did not store itself. One solution to this issue would be to incorporate the continuation stores

into the states themselves, that is, to only apply global-store widening to the value store so that

Σ = Control× KAddr× KStore. This would also benefit our algorithms for the thread-modular

analysis: since the continuation store now is incorporated into the states themselves, there

is no need anymore to clear the visited set in the intra-process analysis phase when such a

continuation store is modified.

However, due to the increase in precision, the use of thread-local continuation stores may have

a profoundly negative impact on the analysis time of an abstract interpreter. For this reason, we

have not used thread-local continuation stores in this dissertation.

4.6. Example: Analysis of a Simple Concurrent Program

In the previous sections, we have discussed ModAtom and IncAtom, two algorithms for a thread-

modular analysis. In this section, we apply these analyses to a simple concurrent program and

compare their output and behaviour. For completeness, we also analyse this program with our

non-modular analysis algorithm.

62

4.6. Example: Analysis of a Simple Concurrent Program

Consider the extremely simple λα program in Listing 4.2. On line 1, a future is created with a

body containing the value #t (true). On line 2, this future is dereferenced by the main thread,

creating a dependency between it and the future f.

1 (define f (future #t))
2 (deref f)

Listing 4.2: A simple concurrent program written in λα.

Figure 4.6a shows the output of the analysis of the program by IncAtom. IncAtom analyses this

program as follows:

1. The main thread is analysed in isolation and a dereferencing dependency is generated.

2. The thread corresponding to the future f is analysed in isolation. Its new return value,

top, is stored.

3. The new return value obtained in step 2 causes the main thread to be reanalysed. However,

this reanalysis starts from the point where the return value of f is read by the main thread.

In Figure 4.6a, the transition arrows indicate the step in which a state was generated. The left

graph component corresponds to the analysis of the main thread and is mostly generated in

step 1 of the analysis. The updated return value of future f causes state 3 to be reanalysed in

step 3, but reanalysis is avoided for states 5 to 9. The right graph component corresponds to the

analysis of future f. As can be seen in the figure, this thread is analysed in step 2 of the analysis.

Figure 4.6b shows the output of the analysis of the program by ModAtom. ModAtom analyses

this program in a similar way to IncAtom. However, in step 3 of the analysis, the main thread is

reanalysed in its entirety, starting from its initial state (state 9). Hence, states 5 to 9 are reanalysed

although they were not affected by the updated return value of future f.

Both ModAtom and IncAtom produce an abstract state graph containing 10 abstract states. Their

modular nature avoids the need for the analysis to explicitly consider all thread interleavings.

On the contrary, this is exactly how our non-modular analysis algorithm works. The result of

the non-modular analysis of the program in Listing 4.2 is depicted in Figure 4.7. Now, a single

graph containing 20 abstract states is obtained. Hence, even for a very simple program, the

benefits of a modular analysis are clear.

63

4. An Incremental Thread-Modular Analysis for λα

(
a
)

A
n

a
l
y
s
i
s

r
e
s
u

l
t

o
f

I
n

c
A

t
o

m
.

(
b

)
A

n
a
l
y
s
i
s

r
e
s
u

l
t

o
f

M
o

d
A

t
o

m
.

F
i
g
u

r
e

4
.
6
.
:
R

e
s
u

l
t

o
f

a
n

a
l
y
s
i
n

g
t
h

e
p

r
o
g

r
a
m

i
n

L
i
s
t
i
n

g
4
.
2

u
s
i
n

g
t
h

e
m

o
d

u
l
a
r

a
n

a
l
y
s
i
s

a
l
g
o
r
i
t
h

m
s
.

64

4.6. Example: Analysis of a Simple Concurrent Program

F
i
g
u

r
e

4
.
7
.
:
R

e
s
u

l
t

o
f

a
n

a
l
y
s
i
n

g
t
h

e
p

r
o
g

r
a
m

i
n

L
i
s
t
i
n

g
4
.
2

u
s
i
n

g
t
h

e
n

o
n

-
m

o
d

u
l
a
r

a
n

a
l
y
s
i
s

a
l
g
o
r
i
t
h

m
.

65

4. An Incremental Thread-Modular Analysis for λα

4.7. Conclusion

In this chapter, we first discussed effects as a means to formalise thread interference. We distin-

guished four types of effects and added them to the formalisation of λα, resulting in λε. This

addition enables λα to be analysed using a thread-modular static analysis.

We presented an algorithm for a non-incremental thread-modular analysis for λα, based on an

existing algorithm introduced by Stiévenart (2018), in Section 4.2 and showed that this algorithm

terminates. We found however that when the algorithm reanalyses an abstract thread, it entirely

reanalyses the thread even though this may be unnecessary. Therefore, we proposed to render

the intra-process analysis phase of the algorithm incremental. This allows an abstract thread

to be reanalysed starting from the point where another thread interfered, therefore avoiding

redundant work and lowering the analysis’ runtime.

After having introduced our new incremental thread-modular analysis, we proposed two op-

timisations that may decrease the time needed by the analysis even further. First, we propose

visited set caching to reduce the size of the abstract state space that may need to be traversed,

but we also impose restrictions on the use of this technique to ensure soundness. Second, we

present intra-process analysis abortion, which aborts the analysis of an abstract thread when it

is known that a later reanalysis is needed. Hence, this technique aims to avoid duplication of

work. We refer to Chapter 6 for an evaluation of these optimisations.

In Section 4.5, we discussed some general remarks regarding both the incremental and non-

incremental algorithms for the thread-modular analysis of λα. Finally, we concluded by ex-

emplifying how the different analysis algorithms analyse a simple concurrent program. This

example illustrates the benefit of using modular analysis techniques, as well as how the incre-

mentality of the intra-process analysis of IncAtom results in a reduction of the work performed

by the static analysis.

66

5
I M P L E M E N TAT I O N

In Chapter 3, we presented λα, a concurrent language with atoms of which we formalised both

the concrete and abstract semantics. Thereafter, in Chapter 4, we presented two algorithms to

perform a thread-modular analysis of λα. In this chapter, we discuss how the semantics of λα

and the presented algorithms are implemented.

The implementation of the work in this dissertation has been incorporated in Scala-AM, a

modular framework written in Scala used to experiment with AAM-based abstract interpreters

(Stiévenart, Vandercammen, et al., 2016; Stiévenart, Nicolay, et al., 2016). We first briefly intro-

duce the framework in Section 5.1. Next, we discuss our implementation of futures and atoms in

Section 5.2. Last, we discuss the implementation of the non-incremental and incremental thread-

modular analysis algorithms for λα in Section 5.3. In our descriptions, we will try always to stay

high-level and to omit detailed information to ease comprehension. Our entire implementation

is publicly available in an online source code repository
1
.

5.1. Background on Scala-AM

Scala-AM is a framework designed to facilitate the implementation of static analyses which

are based on the AAM design method. The key property of the framework distinguishing it

from other comparable frameworks is its functional and modular design: the implementation

of Scala-AM is partitioned in different components that each are responsible for a different

aspect of an abstract interpreter. By combining implementations for the different components,

an abstract interpreter is obtained and by exchanging the implementation of one component for

another implementation, the abstract interpreter can perform a different analysis, use a different

precision, analyse another language,. . . without the need to modify the implementation of the

other framework components.

The Scala-AM framework consists out of five main components (Stiévenart, Vandercammen, et

al., 2016):

• The semantics component of Scala-AM prescribes how the expressions of a language

must be evaluated. By changing the implementation of this component, the framework

can be configured to analyse a different language.

1
See branch thesis on https://github.com/jevdplas/scala-am.

67

https://github.com/jevdplas/scala-am

5. Implementation

• The value domain of the analysed language is implemented in Scala-AM’s lattice compo-

nent. This component represents the (abstract) values used by the framework’s semantics.

• The timestamp component allows to write context-sensitive analyses (see our correspond-

ing remark in Section 3.1.2).

• The algorithm used to compute the analysis result is implemented in the machine com-

ponent of Scala-AM.

• The address component of Scala-AM implements the (continuation) addresses the frame-

work uses.

For each component, a specific interface is defined by which the different components interact,

allowing to interchange the implementations of components easily. For example, the framework

can be used both as an abstract interpreter as well as a concrete interpreter by swapping in a

concrete implementation for the lattice, timestamp and address components, but without having

to alter the semantics and machine components. As a result, the framework’s modular design

simplifies the study of different analyses.

In addition to these five main components, there are also components that are used to facili-

tate the cooperation and decoupling of the different components. For example, to evaluate an

expression under a given environment and store, the machine component calls the stepEval
function of the semantics; to continue with a given value and continuation frame, the machine

calls the stepKont function of the semantics. The results of such calls are actions, which are used

by the semantics to instruct the machine component. By means of actions, the implementations

of the semantics and machine components are strictly decoupled. In Scala-AM, stepEval and

stepKont have the following type signatures:

def stepEval(e: Exp, env: Env, store: Store, t: Time): Set[Action]
def stepKont(v: Val, frame: Frame, store: Store, t: Time): Set[Action]

The arguments given to stepEval are the expression to evaluate, the environment in which

the expression is to be evaluated, the current store and a timestamp. stepKont gets the value

resulting from evaluation, the topmost stack frame, the current store and a timestamp.

The implementations of the different components used directly impact the precision of the

analysis performed by the framework. Scala-AM already contains a relatively complete imple-

mentation of the semantics of the R5RS Scheme language, as well as some implementations for

lattices, timestamps and addresses. Furthermore, the framework contains machine implementa-

tions for an AAM analysis of single-threaded programs, as well as for a concrete interpretation

of such programs.

The contributions we make require modifications to the different components of Scala-AM. In

the remainder of this chapter, we present our implementation of futures and atoms, as well as

our implementation of the modular analyses presented in Chapter 4.

5.2. Implementation of the Semantics of λα

We now discuss the implementation of the semantics of λα, a concurrent language with atoms.

We base our work on the implementation of the Scheme semantics that is already present

in the framework and consider this as an extended implementation of λ0. This results in a

Scheme-like language that is enriched with futures and atoms. We now first discuss how futures

are implemented and how the machine component of Scala-AM is modified to support this

68

5.2. Implementation of the Semantics of λα

concurrent language. Thereafter, we discuss how atoms are implemented.

5.2.1. Implementation of Futures and a Non-Modular Concurrent Analysis

To extend the basic Scheme implementation with futures, we must modify three components

of the framework:

• The semantics component that defines how expressions are evaluated must be extended

to support futures.

• The machine component, which defines how the fixed-point computation is performed,

must be extended to support multiple threads.

• The lattice component must be extended since thread identifiers are added as a new value

type.

We now briefly explain the extension of these three components.

The Scheme semantics distinguishes regular functions from special forms. When a regular function

is called, a standard evaluation procedure is followed: first the operator and operands are

evaluated, whereafter the body of the function is executed in an extended environment (see

rules appl-operator, appl-operand and appl-body in Figure 3.5). On the contrary, when a special

form is used, a custom evaluation procedure is followed. Most built-in primitives and all user-

defined functions are regular functions, such as, for example, +, list and equal?. Special forms

are, for example, if and letrec (see rules letrec-binding and letrec-body in Figure 3.5). Note

that in our formalisation, we used an atomic evaluation function that allowed us to shorten

the formalisation of the transition rules. Although it is possible to implement such a function,

we refrain from doing so in our implementation. Instead, in our implementation, we do not

distinguish atomic expressions from complex expressions but handle every expression in a

uniform manner. This does not impact soundness in any way, but the abstract interpreter may

need to perform more steps to analyse a given expression.

We classify the new primitives for futures, introduced in Figure 3.11, as special forms since they

require a specialised treatment by the abstract interpreter. Scala-AM distinguishes between

regular Scheme functions and Scheme special forms in the Scheme parser, which is where

source code is compiled to expressions e ∈ Exp. As a result, to add new special forms, it is key

to first extend the parser of the language.

When the stepEval function of the semantics component encounters an expression (future e),
several steps need to be performed. First, a new abstract thread identifier is allocated, which is

then transformed to an abstract lattice value that can be handled by the different components of

the framework; this transformation is needed because thread identifiers are first-class citizens

in λα. By means of the new action NewFuture, the machine is then instructed to extend its

thread map with a new abstract thread linked to the newly generated abstract thread identifier

whose control component c is set to evaluate the expression e. To evaluate a call (deref e), we

first evaluate e. Thereafter, when the semantics’ stepKont function is called with the thread

identifier v that e evaluated to, the machine is instructed to look up the corresponding return

values. This is shown in Listing 5.1.

69

5. Implementation

1 override def stepKont(v: Val, frame: Frame, store: Store, t: Time): Actions =
frame match {↪→

2 <...>
3 case FrameDeref() =>
4 val futures = getFutures(v)
5 if (futures.isEmpty) {
6 Set(Err(TypeError("Cannot dereference non-future values.", v)))
7 } else {
8 futures.map(tid => Action.DerefFuture(tid, store))
9 }

10 <...>
11 }

Listing 5.1: Implementation of the deref special form (part).

It is the responsibility of the machine component to drive the analysis and to handle the different

abstract threads; the machine component is also responsible for storing the abstract return values

of the abstract threads. Therefore, the framework is extended with an implementation of its

machine component that can handle multiple threads and that can understand actions related

thereto, such as NewFuture. Our implementation of the machine component keeps track of all

information the abstract concurrent transition needs, i.e., it keeps track of the thread map and

current value store. In each step of the analysis, the machine applies the transition function to

every non-halted thread in the thread map while ensuring that all possible thread interleavings

are explored. This way, a non-modular analysis for concurrency is obtained. Like the thread-

modular algorithms presented earlier, this non-modular algorithm computes a fixed-point and

uses a visited set to ensure termination.

Hence, the implementation of futures follows our formalisation of Section 3.2.3, although there

are minor differences between the operational formulation and our formalisation. Due to the

separation of concerns applied in Scala-AM, the implementation of futures requires the modi-

fication of multiple components of the framework. Also, in our implementation, we lift several

restrictions that were imposed earlier to facilitate the formalisation of λ0. For example, our

implementation allows future to be called with a body containing an arbitrarily long list of

expressions to be successively executed by the new future. We do however disallow an empty

body.

5.2.2. Implementation of Atoms

To implement atoms in Scala-AM, we modify two components of the framework. First, since

atoms are values, the lattice component of the framework is extended. Second, the semantics

component of the framework is extended with implementations for the new functions related

to atoms; these primitives were presented in Section 3.18.

The extensions of the lattice component of the frameworks with atoms is straightforward. An

atom is represented as a pointer to an address in the value store. At the address pointed to by

the atom, the value encapsulated by the atom is stored inside a wrapper, indicating that the

value is stored within an atom. This implementation is similar to the existing implementation

of cons cells that was already present in the implementation of the semantics component but

slightly differs from our formalisation.

Unlike the primitives that were added for futures, the primitives for atoms need not be im-

70

5.2. Implementation of the Semantics of λα

plemented as special forms. Listing 5.2 shows the implementation of the atom primitive. In

Scala-AM, every primitive has a name and must implement a function call, which is called

upon a call to the primitive. When the primitive is called, first the number of arguments is

checked (line 5) and an error is returned when the number of arguments differs from one (line

9). Otherwise, a new store address is generated (line 7), the store is extended with the value

stored inside the atom and a pointer to this address is returned.

1 /** Implementation of the "atom" primitive. */
2 object Atom extends Primitive {
3 val name = "atom"
4

5 def call(fexp: Exp, args: List[(Exp, Val)], store: Store, t: Time):
MayFail[(Val, Store, Effects), Error] = args match {↪→

6 case (_, v) :: Nil =>
7 val addr = allocator.pointer(fexp, t)
8 MayFail.success((pointer(addr), store.extend(addr, atom(v)),

Effects.wAddr(addr)))↪→

9 case _ => MayFail.failure(PrimitiveArityError(name, 1, args.size))
10 }
11 }

Listing 5.2: Implementation of the atom primitive.

The implementation of the atom primitive in Listing 5.2 shows a new additional component of

Scala-AM: the MayFailmonad. The reason for the existence of this component lies in the non-

determinism that may arise in an abstract interpreter, which can cause a primitive to succeed

and return an error at the same time. By use of the MayFail monad, such instances can easily

be handled.

Scala-AM’s Scheme semantics performs evaluation differently for regular primitives (that are

not special forms) and user-defined functions. The evaluation of the body of all predefined

regular functions happens atomically from the viewpoint of the different threads, whereas the

execution of user-defined functions does not; the evaluation of special forms may not be atomic.

The fact that predefined regular functions are executed atomically facilitates the implementation

of the compare-and-set! primitive since atomicity is hence guaranteed by the design of the

framework itself. Nevertheless, the implementation of this primitive is relatively complex which

is why we omit it here.

Unfortunately, the design of the framework hampers the implementation of swap!, for which

it is needed to manually construct function calls based on the value stored inside the atom.

Therefore, we implement swap! on top of compare-and-set!, as shown in Listing 5.3. We store

this definition in a prelude and load this prelude before the analysis of a λα program.

1 (define (swap! at fun)
2 (let ((value (read at)))
3 (if (not (compare-and-set! at value (fun value)))
4 (swap! at fun))))

Listing 5.3: Implementation of swap! on top of compare-and-set!.

71

5. Implementation

5.3. Implementation of the Modular Analyses for λα

In this section, we discuss the implementation of the modular analysis algorithms for λα (Al-

gorithms 1 and 3). Since we have already presented and discussed the algorithms in detail in

Chapter 4, we will remain brief and only highlight the key aspects of the implementation.

To implement an analysis algorithm in Scala-AM, it suffices to provide a new implementation

for the machine component of the framework. However, our implementation of the semantics

of λα, presented in Section 5.2, does not contain the generation of effects. To add effects, we also

must extend the semantics component of the framework.

5.3.1. Addition of Effects

To extend the implementation of the semantics with effects, two steps are performed. First,

we define an extra additional component to represent effects in Scala-AM. The definition of

effects is completely similar to their formalisation and we foresee an implementation of the four

types of effects that were identified in Section 4.1. We however adhere to Scala-AM’s modular

semantics and make sure new effect types can be added easily. Therefore, we implement effects

as classes that extend a specific interface; new types of effects can be added by implementing a

new class implementing the interface. We build extra class hierarchies to allow differentiation

between different types of effects: we distinguish between effects that are related to concurrency

and those that are not, as well as between effects that were generated by reading a value

(dereferencing and read effects) and effects that were generated by the modification of the state

of the abstract interpreter (creation and write effects). The four types of effects are defined as

follows:

case class WriteAddrEff(target: Addr) extends Effect
case class ReadAddrEff(target: Addr) extends Effect
case class SpawnEff(target: PID) extends Effect
case class JoinEff(target: PID) extends Effect

Every effect is represented by means of a Scala case class which enables the use of pattern

matching on its instances. Since the framework is modular, effects may be used with different

implementations for addresses and thread identifiers. Hence, a bounded type parameter is

used.

The second step is to parameterise the entire implementation of the semantics and machine

components using the newly defined effects. After all, the effects are generated by the transition

function, which is implemented in the semantics and machine components of Scala-AM. It is

important to make sure that all effects are generated correctly, since otherwise, the analysis may

not be sound.

In the implementation, there is a difference between the points where creation and dereferencing

effects are generated and the points where read and write effects are generated. Since the

machine component of the framework is responsible for handling the different abstract threads,

it is also responsible for generating creation and dereferencing effects. Moreover, the addition

of such effects can happen in a single place, at the point where the machine handles the

instructions of the semantics, such as NewFuture. On the contrary, read and write effects must

be generated every time the store is accessed, which happens in a significant percentage of the

built-in Scheme functions. Therefore, the generation of read and write effects cross-cuts the

72

5.3. Implementation of the Modular Analyses for λα

entire implementation of the semantics component. An example of this is given in Listing 5.4,

which shows the implementation of Scheme’s list primitive. A call to this primitive may cause

changes to the store. Hence, for every address that is written to, a write effect is generated (line

11). The most important changes we have made to this primitive are marked in red.

1 object ListPrim extends StoreOperation("list", None) {
2 override def call(fexp: Exp, args: List[(Exp, Val)], store: Store[Addr, Val],

t: Time): MayFail[(Val, Store[Addr, Val], Effects), Error] =↪→

3 args match {
4 case Nil => MayFail.success((nil, store, Effects.noEff()))
5 case (exp, v) :: rest =>
6 for {
7 (restv, store2, effs) <- call(fexp, rest, store, t)
8 consv = cons(v, restv)
9 consa = allocator.pointer(exp, t)

10 store3 = store2.extend(consa, consv)
11 } yield (pointer(consa), store3, effs ++ Effects.wAddr(consa))
12 }
13 }

Listing 5.4: Modifications to the implementation of the list primitive.

5.3.2. Implementation of the Thread-Modular Analyses

The implementation of the (incremental) thread-modular analyses requires a change to the

fixed-point algorithm used so far. As a result, to implement the (incremental) thread-modular

analyses, it suffices to modify the machine component of the framework, given of course that

effects are present.

In Chapter 4, we have already presented and discussed the algorithms to perform an (incremen-

tal) thread-modular analysis; the presented pseudocode was based on our actual implementa-

tion. Therefore, our discussion of the implementation can remain brief.

The implementations of ModAtom (Algorithm 1) and IncAtom (Algorithm 3) are fairly straight-

forward and follow the outline of the algorithms. However, the Scala-AM framework is written

in a functional style. As a result, the implementations of the algorithms are functional as well.

This functional style is particularly practical in the modular framework, as it ensures that ex-

changing the implementation of one of Scala-AM’ components cannot influence the behaviour

of the other components.

Both implementations of the thread-modular analysis make use of the technique of intra-process

analysis abortion, which was presented in Section 4.4.2, as it is clear that the use of this technique

can lead to reduced analysis time. It is however less clear whether the same is true for visited set

caching, as this technique may have limited applicability and may require a significant amount

of memory. Therefore, we implement two versions of the incremental thread-modular analysis,

one that performs visited set caching and one that does not.

73

5. Implementation

5.4. Schematic Overview of the Implementation

In Section 5.2, we have presented the implementation of λα, a concurrent language with futures

and atoms that was introduced in Chapter 3. Thereafter, in Section 5.3, we have discussed the

implementation of the modular analysis algorithms for this language; these analysis algorithms

were presented in Chapter 4. For each contribution, several of the components of the Scala-AM

framework have been modified. In Figure 5.1, the components of the framework are laid out

schematically in accordance with the analysis of a program. Each component that has been

modified is annotated with the number of the chapter describing the contribution for which the

component was modified.

Figure 5.1.: Schematic overview of the components Scala-AM. The numbers indicate the chap-

ters of this dissertation for which a component is modified.

5.5. Conclusion

In this chapter, we have presented an overview of the implementation of the contributions

discussed in this dissertation. Our work has been incorporated in Scala-AM, a modular frame-

work written in Scala to facilitate the construction of AAM-based abstract interpreters. The

framework’s implementation is modular to achieve a high separation of concerns; every compo-

nent within the framework must implement a specified interface to allow interaction by other

components.

We have implemented λα as an extension of the existing implementation of the Scheme program-

ming language. To this end, we extended the semantics and lattice component of the Scala-AM

framework. We also provided a new implementation of the framework’s machine component

to perform a non-modular analysis of λα.

To support modular analyses, a new additional component was added to the framework to

represent the effects generated by the analysis. Afterwards, the actual algorithms to perform

the modular analysis were implemented in the framework’s machine component.

74

6
E VA LUAT I O N

In this chapter, we evaluate the contributions presented in the previous chapters. In this disser-

tation, we have made two contributions. First, we have applied a thread-modular static analysis

to futures and atoms. Second, we have designed a new incremental algorithm to perform thread-

modular analyses. We note again that this algorithm is not incremental with respect to source

code changes, but with respect to the computation of the analysis result for a single abstract

thread.

It is difficult to evaluate our first contribution as this requires an extensive quantitative investi-

gation into the use of futures and atoms in real-life source code. In this chapter, we will therefore

focus on the evaluation of our second contribution. In Section 6.1, we first empirically evaluate

soundness of IncAtom since this is a crucial property: we require our analysis to be sound.

Thereafter, we study the IncAtom in more detail in Section 6.2 by evaluating its behaviour

according to several metrics. Finally, we present a conclusion in Section 6.3.

6.1. Soundness Testing

A first important aspect of IncAtom that is to be evaluated is soundness. To this end, we

have empirically evaluated soundness of the algorithm. In Section 6.1.1, we first discuss the

methodology used during the soundness evaluation, as well as our experimental setup. Next,

in Section 6.1.3, we present our results.

6.1.1. Methodology and Experimental Setup

To evaluate the soundness of IncAtom, we perform an empirical evaluation wherein the results

produced by IncAtom are compared to those produced by ModAtom. Our evaluation consists

out of comparing the results of both algorithms on a set of 28 benchmark programs. We refer to

the next section for a more detailed overview of these benchmark programs.

To evaluate soundness, we prepare two abstract abstract interpreters, one performing a ModAtom

analysis and one performing an IncAtom analysis. For each of the 28 benchmark programs, we

analyse the respective program using the two abstract interpreters, resulting in two sets of

abstract state graphs. In addition, we also take the final stores resulting from the analyses into

75

6. Evaluation

account; we will refer to the store resulting from the analysis performed by ModAtom as σM
and to the store resulting from the analysis performed by IncAtom as σI . We call the analysis of

a given program using a given algorithm an experiment.

The comparison of the results from ModAtom and IncAtom is done as follows: in each set of

abstract state graphs, we look at the set of identifiers that are evaluated. For each identifier in

this set, we look up the abstract value related to it by the corresponding final store, that is, in

σM for the result of ModAtom and in σI for the result of IncAtom. For each identifier, we then

verify that the abstract value stored in σI is an over-approximation of the abstract value stored

in σM. If this is the case, IncAtom is sound given that ModAtom is sound. The reason for this

is that in this case, it is guaranteed that the fixed-point computation performed by IncAtom

considered at least the same abstract values than ModAtom for all identifiers. However, if this

is not the case, we do not gain information on the soundness of IncAtom. The reason for this

is that we now only know that σI is not an over-approximation of σM, which may be the case

when IncAtom is unsound or when it is sound but more precise than ModAtom. Therefore, no

conclusions can be drawn when σI does not over-approximate σM. The soundness of IncAtom

is conditional on the soundness of ModAtom since the results of the latter are used to verify the

results of the former. We refer to Stiévenart (2018) for a proof of the soundness of ModAtom.

Using the evaluation technique just described, which consists of comparing σI to σM, it is also

possible to get information about the relative precision of IncAtom with respect to ModAtom.

If, for every identifier, the corresponding abstract value in σI is identical to the abstract value in

σM, IncAtom is at least as precise as ModAtom. If however, the abstract values related to some

identifiers in σI are strict over-approximations of the values related to these identifiers by σM,

the incremental analysis is less precise than the non-incremental analysis.

Now we have explained our methodology, we can discuss our experimental setup. As explained

before, two abstract interpreters will be constructed; one abstract interpreter will use ModAtom

whereas the other will use IncAtom. Hence, the two abstract interpreters use a different imple-

mentation of the machine component of Scala-AM. To allow a meaningful comparison of the

results, the implementations of the other components of the framework are fixed.

Hardware

Model Dell PowerEdge R730 (2015)

CPU 2 × Intel Xeon 2637 v3

Physical cores 2 × 4

Hyperthreading Disabled

Base frequency 3.50 GHz

Max. turbo frequency 3.70 GHz

L1 data cache 2 × 4 × 32 kB

L1 instruction cache 2 × 4 × 32 kB

L2 unified cache 2 × 4 × 256 kB

L3 unified cache 2 × 15 MB

RAM 256 GB

OS Ubuntu 18.04.2 LTS

Hostname bertha.vub.ac.be

Software

Java 1.8.0_212

Sbt 0.13.9

Scala 2.12.7

Table 6.1.: Specifications of the machine on which the

experiments were executed.

All experiments are executed on a

single machine whose specifications

are listed in Table 6.1; henceforth,

we will refer to this machine as

Bertha. Note that although Bertha pos-

sesses multiple cores, our static anal-

yser is a sequential program and

hence only uses a single core. Also,

we limit the amount of RAM used

by the Scala runtime to 16 GB, an

amount that is found in modern-day

computers. Scala-AM is configured

to use thread identifiers consisting

of an expression and a timestamp,

name addresses, no context sensitiv-

ity and the type lattice. Using name

addresses signifies that the address

of a variable equals its name (see the

definition of âlloc in Figure 3.9). Hav-

ing no context sensitivity means that

76

6.1. Soundness Testing

timestamps are ignored. Since timestamps are ignored, abstract threads evaluating the same

expression share the same thread identifier. Finally, the use of the type lattice implies that ab-

stract values are represented by their type. For example, 1 is represented by Int and "foo" is

represented by String. During soundness testing, we use a modified version of the semantics

of λα that suppresses output but is otherwise identical to the regular semantics of λα.

Since the static analyser may possibly need a prohibitively long time to perform a single experi-

ment, we impose a time out of 20 minutes. After this, we consider the experiment unusable and

we do not collect results. Hence, for some experiments, we will not be able to present results.

6.1.2. Benchmark Programs

In this section, we give a detailed overview of the benchmark suite used for the evaluation of our

work. In total, 28 benchmark have been used; these are listed in Table 6.2. For each benchmark,

the name of the benchmark, the number of physical lines of code (PLOC) and a short description

are given.

Originally, the benchmark programs made use of threads, locks and references. The programs

were trivially adapted to use futures and atoms as follows: threads were converted to futures

and references were converted to atoms. Additionally, to support the benchmarks using locks,

we have used an extended preamble to which the code given in Example 3.5 is added. Finally,

some minor modifications have been applied to some of the benchmarks where needed. The

fact that the benchmarks initially did not use futures and atoms does not impact the validity of

our results.

Table 6.2 contains a short description of every benchmark program. In each program, some code

has been added to actually run the program, no such code was present yet. As an example, the

mcarlo benchmark program is shown in Listing 6.1.

77

6. Evaluation

Name PLOC Description

abp 85 Simple client-server implementation.

actors 121 Thread-based implementation of actors.

atoms 67 Function memoisation using atoms, applied to the Fibonacci function.

bchain 111 Simple blockchain implementation.

count 51 Thread-safe counter.

crypt 221 Parallel cryptanalysis algorithm.

dekker 53 Dekker’s algorithm for the critical section problem.

fact 69 Parallel factorial function.

life 169 Parallel implementation of Conway’s game of life.

matmul 119 Benchmark that compares multiple matrix multiplication algorithms for correctness.

mcarlo 35 Parallel Monte Carlo simulation for the approximation of pi.

mceval 82 Meta-circular Scheme interpreter supporting threads.

minimax 129 Implementation of a simple game.

msort 45 Parallel merge sort.

nbody 163 Parallel mathematical simulation of the solar system.

pc 47 Producer-consumer problem.

phil 48 Dining philosophers problem.

phild 62 Alternative implementation of the dining philosophers problem.

pp 48 Parallel threads mutating shared memory.

pps 104 Implementation of the parallel prefix sum algorithm.

qsort 81 Parallel quicksort.

ringbuf 86 Ring-buffer benchmark.

rng 26 Parallel random number generator.

sieve 67 Parallel implementation of Eratosthenes’ sieve.

stm 158 Thread-based implementation of software transactional memory.

sudoku 92 Parallel sudoku checker.

trapr 74 Parallel integration using trapezoids.

tsp 149 Travelling salesman problem.

Table 6.2.: Overview of the benchmarks.

78

6.1. Soundness Testing

1 ;; Monte-carlo simulation using futures.
2

3 (define MAXSIZE 10000)
4

5 (define (inside-circle? radius x y)
6 (< (+ (* x x) (* y y)) (* radius radius)))
7

8 (define (monte-carlo-seq size n)
9 (define (monte-carlo-helper i amount)

10 (if (= i 0)
11 amount
12 (let ((px (random size))
13 (py (random size)))
14 (if (inside-circle? size px py)
15 (monte-carlo-helper (- i 1) (+ amount 1))
16 (monte-carlo-helper (- i 1) amount)))))
17 (monte-carlo-helper n 0))
18

19 (define (monte-carlo-conc size n)
20 (if (< n MAXSIZE)
21 (monte-carlo-seq size n)
22 (let ((t1 (future (monte-carlo-conc size (quotient n 2))))
23 (t2 (future (monte-carlo-conc size (quotient n 2)))))
24 (+ (deref t1) (deref t2)))))
25

26 (define (approximate-pi size iterations)
27 (/ (* 4. (monte-carlo-conc size iterations)) iterations))
28

29 ;; Run the program.
30 (define radius 1000000000)
31 (define pi (approximate-pi radius 100000000))
32 (display pi)
33 (if (< (abs (- 3.14 pi)) 0.01)
34 (display "Looks like pi!")
35 (display "Not really good."))

Listing 6.1: mcarlo benchmark program.

6.1.3. Results

In the previous sections, we have presented an experimental evaluation strategy to verify the

soundness of IncAtom. A result was obtained for 24 out of the 28 benchmarks; the other

benchmarks timed out or caused an error, due to a shortage of memory, for example. The

results of the evaluation for these 24 benchmarks are depicted in Table 6.3.

Our experimental evaluation reveals that IncAtom is guaranteed to be sound on 21 out of the 24

benchmarks. We find that, on these benchmarks, IncAtom is as precise as ModAtom, that is, the

incrementalisation of ModAtom has not lead to a loss of precision. This result was expected since

the difference between IncAtom and ModAtom is limited to IncAtom using a finer granularity

of effect tracking. Although this is a fundamental change to the algorithm, we did indeed not

79

6. Evaluation

expect this to influence soundness or to have a negative impact on precision as we did not make

changes that are expected to negatively influence the algorithm’s soundness.

However, for the other 3 benchmarks, we find that the store returned by of IncAtom, σI is not

an over-approximation of the store returned from ModAtom, σM. Importantly, this does not

imply that IncAtom is unsound on these benchmarks but only means that soundness cannot be

established by comparing σI to σM. Therefore, for these 3 benchmarks, we manually analyse the

differences between the results of ModAtom and IncAtom. We find that the observed differences

are related to precision improvements, that is, we find that on these 3 benchmarks, IncAtom is

more precise than ModAtom. A more thorough discussion on why IncAtom may have a higher

precision than ModAtom is given in section 6.2.2.

6.2. Metrics for IncAtom

After having verified soundness of IncAtom in the previous section, we now empirically eval-

uate the algorithm’s behaviour according to several metrics, thereby comparing it to its non-

incremental counterpart, ModAtom. First, in Section 6.2.1, we discuss our methodology and

experimental setup. Next, in Section 6.2.2, we present the obtained results.

6.2.1. Methodology and Experimental Setup

To evaluate the behaviour of our incremental algorithm, we identify two metrics upon which

our evaluation can be based:

• The number of states explored by the static analyser gives an indication of the amount

of work that is needed to analyse a program. Under certain circumstances, the number of

states is also an indicator for the precision of the analysis: when a fixed lattice is used, a

lower number of states may indicate a higher precision.

• The analysis time is the time needed by the static analyser to analyse a program. Lower

analysis times indicate that the analysis scales better to large programs.

In this section, we discuss how the metrics just described are evaluated and introduce our

Benchmark Soundness Test Precision

abp X Same

actors X Same

atoms X Same

bchain X Same

count X Same

dekker X Same

fact ? −
mcarlo X Same

mceval X Same

minimax ? −
msort ? −
nbody X Same

Benchmark Soundness Test Precision

pc X Same

phil X Same

phild X Same

pp X Same

pps X Same

qsort X Same

ringbuf X Same

rng X Same

sieve X Same

sudoku X Same

trapr X Same

tsp X Same

Table 6.3.: Results of the experimental soundness evaluation of IncAtom.

80

6.2. Metrics for IncAtom

experimental setup.

To evaluate the number of states and the analysis time, we will compare three different analysis

algorithms with respect to the above metrics:

• ModAtom (Algorithm 1 of Section 4.2);

• IncAtom (Algorithm 3 of Section 4.3);

• IncAtom with visited set caching.

We do not explicitly compare our thread-modular algorithms to a non-modular algorithm but

refer to Stiévenart (2018) for a detailed comparison of a non-modular analysis and a ModConc

analysis; our analyses are based on the latter.

For IncAtom, we foresee an extra metric: the Average Computation Reuse Ratio (ACRR). We

define this metric as follows. For each thread that is analysed multiple times, the CRR is the

percentage of edges in the thread’s result graph that were not generated during the last intra-

process analysis of the thread. The ACRR is then the average of the CRR for all threads that

were analysed multiple times. For IncAtom with visited set caching, we also foresee an extra

metric, the Visited Set Reuse Ratio, to determine how often a cached visited set actually is reused.

We define this metric as the percentage of reanalyses where a cached visited set is used.

We compare the three algorithms mentioned above as follows. We prepare an abstract abstract

interpreter by fixing the implementation of all of Scala-AM’s components, except for the im-

plementation of the machine component. For each of the algorithms above, we swap in the

corresponding machine component and then use the framework to analyse a given program.

Fixing the implementations of the other components is needed to obtain a meaningful com-

parison of the different machines, as the use of another implementation for one of the other

components, such as for the lattice component, may lead to different results. Again, a set of 28

benchmark programs is used for the evaluation of the metrics and we refer again to Section

6.1.2 for a more detailed overview of these programs. We call the analysis of a given program

using a given algorithm an experiment.

Our experimental setup is identical to the one used for soundness testing, which is described

in Section 6.1.1. Again, all experiments are executed on Bertha, whose specifications are listed

in Table 6.1. Scala-AM is configured to use thread identifiers consisting of an expression and a

timestamp, name addresses, no context sensitivity and the type lattice. As before, the amount

of RAM used by the Scala runtime is limited to 16 GB and a time out of 20 minutes is imposed.

During each experiment, we use a modified version of the semantics of λα that suppresses

output but is otherwise identical to the regular semantics of λα.

To measure the number of states that are explored by the static analyser, it suffices to execute

every experiment only once, that is, to analyse every benchmark program once using every

algorithm. The same is true for measuring the average computation reuse ratio and the visited

set reuse ratio. However, every experiment must be repeated multiple times in order to measure

its analysis time. The reason for this is that the exact time to run the analysis may differ from one

execution to the next due to nondeterminism in the CPU of Bertha and the use of a JIT compiler

by the JVM, for example. We foresee three warm-up runs followed by 20 timed iterations to

measure the analysis time needed for every experiment. We then take the average of these

measurements as the result for the given experiment. Every iteration of every experiment is

preceded by a manual invocation of the garbage collector to reduce possible variances of the

analysis time caused by memory management performed by the Scala runtime.

When measuring the analysis time for an experiment, we require every repetition of the ex-

81

6. Evaluation

periment, including all warm-up runs, to run within the required time frame. Otherwise, the

experiment is considered unusable and no results can be collected.

6.2.2. Results

In this section, we describe the results obtained from the execution of the experiments de-

scribed in the previous section. We separately discuss the results obtained for each metric. We

first present the results for the analysis time, followed by the results for the number of states

generated by the analyses. Finally, we discuss the results for the average computation reuse ratio.

Measurements of the analysis time are always rounded to three decimal places and percentages

are always rounded to two decimal places.

Analysis Time

Table 6.4 depicts the average time needed by the different analysis algorithms to analyse the

different benchmarks, as well as the sizes of the corresponding 95% confidence intervals which

have been calculated using a Student’s t-distribution with 19 degrees of freedom. Not all bench-

marks could always be analysed successfully. We require all 3 warm-up runs and 20 timed

repetitions of an experiment to have completed successfully in order for the result to be usable.

When at least one repetition of an experiment timed out, this is indicated with ∞. Benchmarks

which timed out on all analysers have been omitted. Also, for some experiments, the analysis

resulted in an error. We found that these errors all are memory related. In the remainder of this

chapter, we will only focus on the 23 benchmarks that were successfully analysed by at least

one machine; the other 5 benchmarks have been omitted. The fact that all iterations must finish

in time may explain why a soundness result was obtained for the tsp benchmark, whereas no

timing results were obtained for the benchmark.

Modular analyses

An important contribution of this thesis is the incrementalisation of ModAtom. In Chapter 4, we

claimed that ModAtom performs redundant work which could cause an unnecessary increase

in analysis time. Therefore, a detailed comparison of the average analysis times of ModAtom

and IncAtom is given in Table 6.5. We find that the analysis times of IncAtom are lower than

those of ModAtom for 21 out of 23 benchmarks and higher for 2 out of 23 benchmarks. It

is, however, important to point out that the absolute analysis time of some benchmarks, such

as dekker and pp, is rather low, which means that the measurements for these benchmarks

may contain a relatively large measurement error. Hence, interpreting such results may be

misleading. Therefore, it is important to take the size of the confidence intervals, as depicted in

Table 6.4, into account.

When looking at the last column of Table 6.5, we find that IncAtom only is slower than ModAtom

on 2 out of 23 benchmarks, actors and pps. However, for actors, the confidence intervals

overlap and hence we cannot conclude that there is indeed a performance difference for the

benchmark. On pps however, the difference in performance is more substantial: IncAtom is

around 10.5% slower than ModAtom and the confidence intervals do not overlap. The reason

for this slowdown is unclear however and may need further investigation. However, in absolute

time, the difference is negligible.

Looking again at the benchmarks where IncAtom performs better than ModAtom shows that

the reduction of the analysis time is relatively small on some benchmarks but significant on

others. The highest reduction of the analysis time is seen for fact, which is analysed almost

82

6.2. Metrics for IncAtom

Benchmark ModAtom IncAtom

IncAtom with

visited set caching

abp 48.937 ± 0.869 45.558 ± 0.657 1357.130 ± 8.732

actors 870.514 ± 15.136 874.208 ± 14.165 70996.681 ± 160.543

atoms 40.059 ± 0.632 35.817 ± 0.559 989.321 ± 2.871

bchain 87.447 ± 1.916 80.550 ± 1.177 4234.056 ± 11.297

count 21.249 ± 0.553 19.337 ± 0.492 230.963 ± 2.327

dekker 7.092 ± 0.579 6.580 ± 0.565 27.951 ± 0.634

fact 507.727 ± 8.456 185.647 ± 1.747 17439.612 ± 72.188

mcarlo 76.920 ± 0.430 32.663 ± 0.214 1115.855 ± 0.259

mceval 160546.763 ± 926.474 127847.833 ± 66.213 ∞
minimax 7805.516 ± 55.231 7564.548 ± 71.653 739694.057 ± 620.763

msort 245.178 ± 4.982 144.588 ± 2.360 16320.332 ± 20.776

nbody 476.183 ± 6.723 472.187 ± 7.076 55966.308 ± 101.272

pc 18.553 ± 0.310 11.190 ± 0.293 153.333 ± 2.346

phil 15.958 ± 0.684 13.808 ± 0.229 127.453 ± 0.958

phild 28.071 ± 0.448 25.777 ± 0.296 413.474 ± 4.145

pp 14.141 ± 0.342 12.723 ± 0.269 117.358 ± 0.618

pps 291.446 ± 5.252 322.272 ± 3.426 15700.026 ± 32.355

qsort 182.635 ± 3.074 99.366 ± 1.699 3092.401 ± 21.297

ringbuf 31.365 ± 0.329 29.155 ± 0.398 857.569 ± 10.007

rng 14.398 ± 0.184 12.464 ± 0.113 340.833 ± 3.821

sieve 26.625 ± 0.370 23.684 ± 0.616 438.408 ± 3.808

sudoku 1301.171 ± 23.045 1285.861 ± 10.124 11451.039 ± 47.353

trapr 17.105 ± 0.908 13.647 ± 0.139 170.188 ± 1.835

Table 6.4.: Average time needed by the different static analysers to analyse the given benchmarks

in milliseconds together with the size of the 95% confidence interval. ∞ indicates a

time out. Benchmarks for which no result was obtained are omitted.

63.5% faster by IncAtom compared to ModAtom. Significant speed-ups are also seen for other

benchmarks such as mcarlo and qsort. The biggest difference in absolute analysis time is seen

for mceval, which is analysed around 30 seconds faster by IncAtom than by ModAtom.

However, the reductions in analysis time strongly depend on the actual program that is analysed.

There may be different reasons for this. For example, thread interference, which may cause a

thread to be reanalysed, can happen in the beginning of its body or it can happen in the end

of the body. It is clear that in the first case, more of the thread’s body needs to be reanalysed

than in the second case. The same is true for reanalyses that are triggered due to read-write or

write-write conflicts. Additionally, not every thread may be reanalysed and the time needed to

analyse different abstract threads may also differ strongly. Hence, the performance gains that

can be achieved using an incremental analysis are very program dependent.

In summary, our results show that, in general, IncAtom performs better than ModAtom. We

found that only one benchmark was analysed significantly slower by IncAtom than by ModAtom

but that the absolute difference in analysis time is negligible. However, IncAtom outperforms

ModAtom on a vast majority of the benchmarks. For the fact benchmark, a reduction of the

average analysis time of 63.44% is seen. The most significant reduction of the absolute analysis

time is seen for mceval, which is analysed around 30 seconds faster. Hence, significant speed-

ups are found, both in absolute as well as in relative numbers. However, the gains in analysis

time are very program dependent.

83

6. Evaluation

Benchmarks ModAtom IncAtom Difference

abp 48.937 45.558 −6.90%

actors 870.514 874.208 +0.42%

atoms 40.059 35.817 −10.59%

bchain 87.447 80.550 −7.89%

count 21.249 19.337 −9.00%

dekker 7.092 6.580 −7.22%

fact 507.727 185.647 −63.44%

mcarlo 76.920 32.663 −57.54%

mceval 160546.763 127847.833 −20.67%

minimax 7805.516 7564.548 −3.09%

msort 245.178 144.588 −41.03%

nbody 476.183 472.187 −0.84%

Benchmarks ModAtom IncAtom Difference

pc 18.553 11.190 −39.69%

phil 15.958 13.808 −13.47%

phild 28.071 25.777 −8.17%

pp 14.141 12.723 −10.03%

pps 291.446 322.272 +10.58%

qsort 182.635 99.366 −45.59%

ringbuf 31.365 29.155 −7.05%

rng 14.398 12.464 −13.43%

sieve 26.625 23.684 −11.05%

sudoku 1301.171 1285.861 −1.19%

trapr 17.105 13.647 −20.22%

Table 6.5.: Detailed comparison of the average time needed by ModAtom and IncAtom for the

analysis of the different benchmarks. Times are denoted in milliseconds.

Visited Set Caching

In Section 4.4, two optimisations for IncAtom were introduced. Intra-process analysis abortion

has been integrated both in ModAtom as well as in IncAtom. However, due to its possibly limited

applicability, the technique of visited set caching was not readily incorporated into IncAtom.

To evaluate whether visited set caching is a good technique to further reduce the analysis time,

we compare two variants of IncAtom: one variant wherein visited set caching is not included

and one variant wherein the optimisation is included. The results of these two algorithms are

depicted in the two last columns of Table 6.4 respectively. We see that the version of IncAtom

with visited set caching performs significantly worse than IncAtom on all benchmarks. For

example, on the actors benchmark, we find that IncAtom with visited set caching is more than

81 times slower than IncAtom without visited set caching and on the fact benchmark, the

version with visited set caching is even around 94 times slower. In fact, we find that the visited

set reuse ratio is zero for all benchmarks.

The reason why the visited set reuse ratio is zero for all benchmarks may be caused due to

the fact that there is a high probability that the store is changed between the point where a

visited set is cached and the point where it could be reused. After all, a cached visited set is only

reused if a thread is reanalysed, which may be the case when the store changes or when another

abstract thread’s return value changes. In the first case, the store is changed and it becomes

impossible to use the cached visited set. Although the store is not necessarily changed in the

second case, there is a high probability that the store has changed indeed. Hence, we conclude

that visited set caching is not a usable optimisation.

It remains unclear however why exactly the version of IncAtom with visited set caching results in

significantly higher analysis times compared to the version of IncAtom without this optimisation;

the analysis using visited set caching even times out on the mceval benchmark. Reasons for this

behaviour may be the increased memory overhead: we have not implemented invalidation of

cached visited sets and hence they can never be garbage collected. As a result, there may be

a higher garbage collection overhead. However, this is most likely not the only cause of this

significant difference in performance, as otherwise, we would expect an exception to be thrown

by the Java runtime environment. Hence, we assume that there might be a hidden overhead

related to the caching of the visited set in the implementation. Unfortunately, the exact reason

for such a performance overhead may be very difficult to pinpoint.

84

6.2. Metrics for IncAtom

Benchmark ModAtom IncAtom

IncAtom with

visited set caching

Difference

ModAtom−IncAtom

abp 636 636 636

actors 2128 2128 2128

atoms 406 406 406

bchain 795 795 795

count 504 504 504

dekker 313 313 313

fact 3097 2641 2605 −14.72%

mcarlo 998 918 918 −8.02%

mceval 15197 14897 ∞ −1.97%

minimax 3957 3912 3912 −1.13%

msort 1924 1856 1856 −3.53%

nbody 1700 1700 1700

pc 361 361 361

phil 372 372 372

phild 450 450 450

pp 396 396 396

pps 972 972 972

qsort 2234 2202 2202 −1.43%

ringbuf 486 486 486

rng 265 265 265

sieve 442 442 442

sudoku 22005 22005 22005

trapr 459 459 459

Table 6.6.: Number of states in the abstract state graphs generated by the different algorithms

for the different benchmarks. ∞ indicates a time out and hence the absence of mea-

surements.

Number of States

Table 6.6 depicts the number of states generated by the different analysis algorithms for the

different benchmarks. Note that the numbers in this table denote the number of states present

in the states graph outputted by the analysis algorithms after filtering (see Section 4.5.1). The

graphs outputted by ModAtom and IncAtom do not always contain the same number of states.

On the contrary, the incorporation of visited set caching in IncAtom does not change the number

of states. Only for the fact benchmark, the version with visited set caching results in slightly

less states but the reason for this is still to be investigated.

The last column of Table 6.6 shows a detailed comparison of the sizes of the graphs outputted

by ModAtom and IncAtom. Although the number of states is equal on 17 out of 23 benchmarks,

IncAtom produces fewer states in 6 out of 23 cases, with a reduction of 14.72% for the fact
benchmark. The fact that IncAtom produces smaller state graphs than ModAtom indicates that

it can analyse the benchmarks with a higher precision. After all, since both analyses are sound,

this means that the graphs produced by ModAtom contain spurious paths that are not generated

by IncAtom.

The fact that IncAtom may generate fewer states than ModAtom stems from the algorithm’s

incremental nature: the algorithm only reanalyses an abstract thread from the point where it

may be affected by another abstract thread, as well as from an assumption that is made in

85

6. Evaluation

the Scala-AM framework but that is unsound in general. The assumption made within the

framework is that no accessor function is ever applied to an empty list or to an empty vector;

the goal of this assumption is to suppress the generation of many false error states and it does

not cause significant soundness issues. Concretely, when an accessor is applied to an empty list

or to an empty vector, ⊥ is returned instead of an error. Under certain conditions, this may also

cause no dereferencing effect to be generated by the analysis when a call to deref is evaluated.

The fact that no dereferencing effect is generated may seem problematic but in fact allows

IncAtom to avoid the generation of spurious paths in the abstract state graph and hence causes

the result of IncAtom to be more precise than the result of ModAtom under these specific

circumstances. To explain this, consider the Scheme program in Listing 6.2 and a specific trace

in the graph of the abstract main thread resulting from the analysis of the program by IncAtom

in Figure 6.1.

1 (define (iter n)
2 (if (> n 0)
3 (cons
4 (future #t)
5 (iter (- n 1)))))
6

7 (let loop ((f (iter 2)))
8 (if (null? f)
9 #t

10 (begin
11 (deref (car f))
12 (loop (cdr f)))))

Listing 6.2: Scheme program for which IncAtom generates fewer states than ModAtom.

Figure 6.1.: Specific trace in the graph of the main thread of the program in Listing 6.2.

The abstract analysis algorithm starts by analysing the main thread. At a given moment, (iter
2) is analysed in a state si. When the abstract interpreter continues, it finds the predicate (> n
0) and analyses it (state sj). In our experiments, the abstract interpreter does not have sufficient

precision to know which branch the program actually takes and hence has to explore both

branches. When continuing in the branch where the predicate corresponds to true, iter returns

and the if-statement in loop is evaluated. Again, the abstract interpreter does not have sufficient

knowledge to decide on the branch to evaluate and hence has to evaluate both branches. When

it evaluates the else-branch, it analyses the call (car f). Since, in this path, f is empty, ⊥ is

returned. Since ⊥ does not represent a thread identifier, no dereferencing effect is generated

by the call (deref (car f)) and this path in the graph ends with an error since a non-future

value is dereferenced.

If the graph of the program is explored in this exact order, no values are stored in the store at

the address where the list is stored. Hence, no thread identifier is found and no dereferencing

effect is generated. If this branch of the program is reanalysed later, a thread identifier may

be found since the store may have changed during the analysis of another abstract thread, for

example. And, since addresses may be reused, a thread identifier may be stored at the given

address. Hence, whereas the initial analysis stopped at sk+1, the reanalysis of this branch will

continue. However, when this branch of the abstract state graph is not analysed again, no extra

86

6.3. Conclusion

states will be generated. Therefore, it is possible that this branch is not extended by IncAtom

whereas it is extended by ModAtom. Note that the graph generated by IncAtom still correctly

over-approximates the behaviour of the given program.

Average Computation Reuse Ratio

Table 6.7 depicts the average computation reuse ration for the different benchmarks. A high

ACRR indicates that the analysis is able to reuse a significant amount of the previously generated

result upon reanalysis of an abstract thread. As can be seen in the table, we were unable to

compute the ACRR for the actors benchmark. The reason for this is that none of the abstract

threads is reanalysed during the analysis of the benchmark, which is possible since no future is

dereferenced in the benchmark program. When looking at the other benchmarks, we see that

the average computation result ratio of ranges up to 96.31%. On 13 out of 23 benchmarks, the

ACRR exceeds 50% and on 7 out of 23 benchmarks, the ACRR exceeds 65%. Hence, overall,

IncAtom is indeed able to successfully reuse previously computed results.

However, the ACRR only takes threads that are reanalysed into account, which means a high

ACRR does not necessarily correspond to a high reduction of the analysis time and vice versa.

For example, suppose a program consisting out of two threads of which one of the two threads

is reanalysed. If the abstract state graph of the thread that is reanalysed is very small compared

to the abstract state graph of the thread that is not reanalysed, being able to reuse a large part

of the previously calculated result of the reanalysed thread may only have a minor influence

on the total runtime of the analysis. Indeed, when relating the ACRR of the benchmarks to the

difference in analysis time, depicted in Table 6.5, we see that it is not possible to correlate the

ACRR and the analysis time.

Benchmark ACRR

abp 96.03%

actors −
atoms 49.07%

bchain 28.65%

count 30.48%

dekker 68.52%

fact 58.42%

mcarlo 96.31%

Benchmark ACRR

mceval 0.00%

minimax 0.01%

msort 45.41%

nbody 28.30%

pc 59.09%

phil 71.30%

phild 73.50%

pp 65.75%

Benchmark ACRR

pps 14.86%

qsort 96.06%

ringbuf 56.38%

rng 55.21%

sieve 30.40%

sudoku 51.91%

trapr 56.80%

Table 6.7.: ACRR for the different benchmarks. The ACRR could not be computed for the actors
benchmark since no abstract thread is reanalysed during the analysis of the bench-

mark.

6.3. Conclusion

In this chapter, we have empirically evaluated our incremental thread-modular analysis algo-

rithm, that was presented in Chapter 4. First, in Section 6.1, we have experimentally shown

soundness of IncAtom by comparing the store resulting from a program’s analysis to the store

returned by ModAtom. Thereafter, in Section 6.2, we have evaluated compared IncAtom to

ModAtom using several metrics; we compared the analysis time and the number of states gener-

ated by the analyses using a benchmark suite containing 28 concurrent higher-order programs.

87

6. Evaluation

Additionally, we have evaluated visited set caching, which we proposed as a possible optimi-

sation to further reduce the analysis time of IncAtom in Section 4.4, but found that it has a

profoundly negative impact on the analysis time. Furthermore, we found the visited set reuse

ratio to be zero for all benchmarks.

When comparing IncAtom to ModAtom, we found that, on a vast majority of benchmark

programs, IncAtom outperforms ModAtom. IncAtom is only significantly slower on 1 out of 23

benchmarks but even then, the difference in absolute analysis time is negligible. Furthermore,

the number of states generated by the incremental analysis is lower than the number of states

generated by the non-incremental analysis for 6 out of 23 benchmarks. Lastly, we find that the

ACRR is above 50% for 13 out of 23 benchmarks but see that there is no immediate correlation

between the ACRR and the analysis time.

88

7
R E L AT E D WO R K

In this chapter, we present recent contributions related to the work in this dissertation, which

is situated on the intersection of multiple domains within the field of static analysis and incre-

mental computing. Our work is, among others, related to following domains: modular static

analysis, static analysis for concurrent languages, abstract interpretation, abstract abstract ma-

chines and incremental computing. We now discuss related work in some of these domains. In

Section 7.1, we present related work on modular analyses of concurrent programs, whereafter

recent work on incremental static analysis is discussed in Section 7.2. Thereafter, in Section 7.3,

we present related work on the design of abstractions. In Section 7.4, we present novel algorith-

mic approaches to compute the abstract collecting semantics of a program. Finally, in Section

7.5, we present recent work on the development of language semantics for combinations of

concurrency constructs. We refer to Cousot & Cousot (2014) for a general overview of abstract

interpretation and for an extensive overview of related literature, including work on abstraction

design, optimisations and applications.

7.1. Analysis of Concurrent Programs

In this dissertation, we have presented an abstract interpreter for λα, a concurrent language

with atoms. The analysis presented in Chapter 4 is a thread-modular analysis, an analysis that

analyses the abstract threads present within a program in isolation. In general, we can classify

the analyses that are developed for the analysis of concurrent languages in two categories:

non-modular analyses and modular analyses, which we discuss in Sections 7.1.1 and 7.1.2

respectively. In each of these sections, we first introduce the related work and then discuss its

relation with our own.

7.1.1. Non-Modular Analysis of Concurrent Programs

Martel & Gengler (2000) present a control-flow analysis for higher-order concurrent languages

with synchronous inter-process communication and dynamic process creation. The presented

analysis is based on the inter-process communication topology of the program, which the anal-

ysis creates by means of automata theory. Each process is represented by a finite automaton that

encodes the possible orderings of executions of the synchronisation points, where synchronisa-

tion points are points in the execution of a process where it synchronises with other processes.

89

7. Related work

By computing the product automaton of the obtained automata, Martel & Gengler obtain an

approximation of the way in which processes in the program synchronise. By using the order

of synchronisation points available in the automata, the size of the product automaton can be

reduced by the elimination of impossible synchronisation sequences, improving the precision

of the analysis.

D’Osualdo et al. (2013) present a static analysis for Erlang-like concurrent programs based on

abstract interpretation. Programs written in Erlang use the actor model for concurrency and

each actor has a mailbox with a First-In-First-Firable-Out behaviour, as it is called by the authors.

The analysis is focussed on safety properties, such as the maximum number of messages that

may reside in an actor’s mailbox. D’Osualdo et al. formalise the core language of Erlang in a

language called λ
Actor

and use this formalisation to obtain an abstract interpreter using the

AAM technique of Van Horn & Might (2010). The abstract semantics so obtained is used to

bootstrap the construction of an Actor Communication System (ACS). This ACS is an infinite-

state model that allows to analyse several aspects of actors without the need to abstract actor

mailboxes, that have an infinite capacity, and the number of actors that may be spawned, which

also may be infinite. Like the abstract interpreter, the ACS uses communication side effects to track

actor behaviour.

To improve the performance of control-flow analyses for higher-order languages performed by

abstract interpreters, Might & Shivers (2006) present abstract garbage collection as a technique

that lowers analysis running times and increases analysis precision. Abstract garbage collection

works similar to regular garbage collection; it establishes a set of addresses in the store that are

unreachable and upon reallocation, the old value is overwritten by the new value instead of

joined with the new value (Might & Shivers, 2006). Stiévenart et al. (2015) apply this technique

of abstract garbage collection to static analysers for concurrent languages, but find that this

adaptation does not lead to significant improvements in analysis time or precision. In addition,

they find that an analysis may benefit from implementing the semantics of concurrency primi-

tives directly in the abstract interpreter rather than on top of other concurrency primitives by

showing that implementing locks directly in the static analyser improves the analysis time and

allows to formulate client analyses more easily than when locks are implemented on top of the

compare-and-swap primitive, confirming a similar prior result from Stiévenart (2014).

Since the work presented by Martel & Gengler (2000), D’Osualdo et al. (2013) and Might &

Shivers (2006) concerns non-modular analyses, their analyses are subject to the state explosion

problem we described in Section 2.3.1. Like our work, the analysis presented by Martel & Gengler

supports dynamic process creation and is applicable to higher-order languages. However, their

analysis is specialised for processes with synchronous inter-process communication, whereas

our analysis is specialised to applications of atoms. Yet another type of concurrency is focussed

on by D’Osualdo et al., who focus on programs using the actor model with dynamic process

creation. Similar to λε, their analysis tracks the interference between threads using effects, which

they call communication side effects. However, the exact types of effects used differ from the ones

used for λε since the actor model for concurrency has no shared memory, for example. The

technique of abstract garbage collection, introduced by Might & Shivers (2006), is also applicable

to the analysis of concurrent languages such as the one developed in this dissertation, as is done

by Stiévenart (2014) for example.

7.1.2. Modular Analysis of Concurrent Programs

Holík et al. (2017) propose effect summaries for thread-modular analyses to compute the in-

terference among threads in linear time. This is achieved by summarising the influences the

90

7.1. Analysis of Concurrent Programs

threads have on shared, lock-free data structures, where an effect summary is defined as a

stateless program that over-approximates the effects a thread may have on a shared heap. Using

these summaries, the interference between threads can be computed. However, the proposed

technique is unsound in general, for which a mechanism to test the correctness of generated

summaries is provided.

Miné (2014) presents an abstract interpretation thread-modular analysis. To increase the preci-

sion of their analysis, and hence decrease the number of false positives returned by the analysis,

they infer relational and history-sensitive properties of thread interference. The interference

of these properties is based on a reinterpretation of rely-guarantee reasoning, an extension

to Hoare logic introduced by Jones (1981). Miné interprets this reasoning technique, which

is thread-modular and therefore well-suited for the analysis of multithreaded programs, as a

fixpoint semantics, which is then abstracted. The resulting analysis significantly reduces the

number of false positives, at the cost of an increased analysis time.

Stiévenart (2018) applies the AAM method to two different concurrent programming paradigms:

actors and shared-memory threads and compare the properties of this analysis to a list of

desirable properties an analysis for concurrent languages must have. It is found that the AAM

method does comply with this list on all points except scalability. As an improvement of

the AAM technique, Stiévenart adapts two existing optimisations to analyses of concurrent

programs and again tests their behaviour with regard to the list of desirable properties by

applying them to the same two concurrent programming paradigms. A first analysis design

technique, called MacroConc, uses Agha et al. (1997)’s technique of macro-stepping, which

means each process in analysed until completion or to the point where a potentially interfering

operation has been performed by the process (Stiévenart, 2018). The idea behind such macro-

steps is the fact that not all process interleavings need to be accounted for explicitly by the

analysis, since some of them are deemed to produce the same result, e.g., when processes are

not mutating shared state, it is of no importance which process steps first. Stiévenart finds

that although MacroConc results in a lower runtime on most benchmarks, its worst-case time

complexity remains exponential. The second analysis technique, called ModConc, applies the

concept of modular static program analysis to analyses for concurrent languages. ModConc

consists out of an inter-process analysis and an intra-process analysis and has all desirable

properties identified by Stiévenart as the analysis has a time-complexity that is now linear in

the number of communication effects generated and hence the analysis scales well to programs

with a large number of processes.

The three analyses just presented all are thread-modular analyses, like the analysis presented

in this dissertation. The effect summaries of Holík et al. (2017) seem to be directly applicable

to our own analysis since their analysis is applicable to lock-free data structures and atoms are

such data structures. In fact, Holík et al. illustrate their technique using compare-and-set!, a

function we have formalised as part of λα. Although Miné (2014) also uses abstract interpretation

as we do, he used a different approach to obtain the abstract semantics of a program, based on

rely-guarantee reasoning. The work of Stiévenart (2018) is very closely related to the work in this

dissertation since ModAtom, our non-incremental thread-modular analysis, is built according

to the ModConc design method and therefore consists out of an intra-process analysis and an

intra-process analysis (see sections 4.2 and 4.3).

91

7. Related work

7.2. Incremental Static Analysis

Recent work on incremental static analysis is performed by Van Es (2017) and Van Es et al.

(2017), who study the incrementalisation of AAM-based abstract interpreters with regard to

changes in the input program. Van Es (2017) proposes state invalidation as a naive technique

to incrementalise AAM-based abstract interpreters. State invalidation tracks the dependencies

between the input program’s abstract syntax tree (AST) and the state graph outputted by the

analysis. Upon a change in the program AST, the state transitions (edges) going out of affected

states (vertices) in the state graph impacted by this change are invalidated and the analysis

is restarted from the affected states onwards. The technique allows reuse of existing states in

the graph, that is, the computation may reach states that were already present in the state

graph and these reached states, as well as their transitive successors, then become part of the

updated result. Unfortunately, Van Es (2017) finds that the location of a change in the source

code has a significant influence on the gains made by the use of state invalidation and that

this technique results in limited reuse of existing states, since often there are small differences

between already existing states and newly computed states, hampering state reuse. To further

improve the incremental technique, state adaptation is presented. State adaptation results in a

significantly lower number of states that need to be recomputed as it not only allows reuse of

states that are identical but also of states that are similar in the sense that the difference between

the states has no impact on the computed successor states. To this end, specific rules defining

similarity are presented.

Van Es (2017) also presents a categorisation of analysis incrementalisation techniques. On one

hand, manual incrementalisation techniques perform the incrementalisation of the analysis ad

hoc, allowing to adapt the incrementalisation algorithm to the specific needs of the analysis. On

the other hand, automatic incrementalisation techniques require the analysis to be implemented

in a specific language of on top of a framework. In this case, the language or framework in which

the analysis is implemented takes care of the incrementalisation of the analysis.

Tripp et al. (2013) present Andromeda, a framework that uses abstract interpretation to perform a

taint analysis, an analysis that verifies whether a program handles untrusted input or confiden-

tial data in a secure way. Andromeda works in a demand-driven way, that is, it only computes

specific parts of information that are requested. The analysis performed by Andromeda is in-

cremental and falls in the category of manual incrementalisation techniques. The incremental

analysis performed by Andromeda is built on a change-impact analysis that computes the part

of the analysis result that needs to be updated as precisely as possible. Tripp et al. (2013) find

that their incremental approach results in fast updated results, producing updated results more

than 100 times faster compared to a complete reanalysis on some benchmarks.

An example of a framework for automatic incremental program analysis is IncA, a recent

framework presented by Szabó et al. (2016). The IncA framework provides a domain-specific

language for developers to write their analysis in, as well as for the specification of the lattices to

be used. The framework represents the program under analysis as a graph pattern that is built on

top of its abstract syntax tree. To perform an analysis, the analysis developer writes an analysis

in the provided domain-specific language, which is then translated to a graph pattern by IncA.

To perform the analysis, IncA uses an incremental engine for graph pattern matching. Upon

a change in the program’s abstract syntax tree, the graph patterns representing the program

change and the incremental engine for graph pattern matching computes the updated result.

The pattern matching engine has been adapted by the introduction of DRED
L
, a new algorithm

to incrementally solve Datalog rules that use recursive aggregation over lattices, also presented

by Szabó et al..

92

7.3. Improved Abstractions

Nichols et al. (2019) present an incremental static analysis for JavaScript. They find that existing

work is limited by two assumptions − the presence of a readily available control-flow graph

and an easily computable syntax mapping between different versions of the program−making

them inapplicable to dynamic languages such as JavaScript. The presented incremental analysis

is based on a technique called fixpoint reuse, which does not rely on these assumptions and hence

is applicable to JavaScript. The technique is based on abstract interpretation and consists of three

steps. First, the old and new version of the program are syntactically compared and a mapping

between corresponding program points is generated. Second, this mapping is used to transfer

abstract states from the prior result to the new result. Third, the analysis is restarted using the

transferred states. During this analysis, every state must be visited to ensure soundness. The first

step in the process is important since it influences the precision of the updated result, as well as

the time needed to generate the incremental result. Nichols et al. identify a trade-off between

precision and analysis speed resulting from this first step. On average across the benchmarks

used by Nichols et al., the incremental computation using the fixpoint reuse technique takes less

than half the time needed to fully compute the new result from scratch. However, the transfer

of abstract states from the old solution to the new solution in the second step of the algorithm

may have a small negative impact on precision.

Liu et al. (2019) present IPA, an algorithm for parallel incremental points-to analyses that

scales well to large codebases without losing precision and claim it is the first such algorithm

that is both incremental and parallel. IPA can handle source-code changes that result in a

modified control-flow graph and it is based on two new observations that allow the avoidance

of unnecessary computations. First, Liu et al. find that to handle a code deletion, no global

reachability analysis needs to be performed. Second, they find that their novel incremental

analysis has a change idempotency property that allows the incremental analysis to be parallelised

easily. Liu et al. find that IPA is two orders of magnitude faster than some other incremental

analyses and up to five orders of magnitude faster than performing an entire reanalysis from

scratch on average across the DaCapo-9.12 benchmarks. However, IPA may require a significant

amount of memory (up to 140 GB).

In this section, we have presented related work on incremental static analysis. There is however

a key difference between the incrementalisation performed by the analysis frameworks dis-

cussed in this section and the incrementalisation approach discussed in this dissertation. The

incremental analyses presented here are incremental with regard to changes in the program that

is analysed. On the contrary, our incremental analysis incrementally computes partial results

but is not incremental with regard to changes in the program under analysis. Hence, we focus

on a different aspect of incrementality than prevalent literature. We are unaware of any other

work presenting incremental static analyses that incrementally compute results irrespective of

changes to the program, like the technique presented in this dissertation.

7.3. Improved Abstractions

The abstract machines obtained by the use of the AAM technique are finite-state machines.

Johnson & Van Horn (2014) state that this approach has a negative impact on the precision of

control-flow analyses for languages with dynamic features, such as first-class continuations and

closures, since a static analyser that is a finite state machine is imprecise when it has to reason

about the return stack that is built during the execution of a program; it cannot determine

exactly where a function call returns. As a solution, Johnson & Van Horn extend the AAM

technique, resulting in a general technique, called Abstracting Abstract Control (AAC), for the

creation of abstract interpreters that are based on pushdown automata rather than finite-state

93

7. Related work

machines. Such pushdown automata have an infinite stack through which calls and returns can

be matched exactly, whereas this is not possible using finite-state machines. The AAC technique

differs from the AAM technique in that continuation frames are no longer allocated in the value

store, but in a separate continuation store indexed by continuation addresses consisting out

of the expression to be evaluated, the environment, the value store and a timestamp. These

components make up the calling context of the given expression. Hence, if two continuation

frames are stored at the same address, this means the function is called twice in exactly the

same context. The function will still return to both call sites due to nondeterminism, but this is

correct and hence, the analysis correctly predicts the control flow of the application.

As part of their AAC technique, Johnson & Van Horn (2014) introduce the use of a separate

continuation store Ξ. Inspired by this concept, our formalisation of λα, presented in Chapter 3,

also differentiates between a value store σ and continuation store Ξ. The use of two separate

stores allows to further fine-tune the precision of the analysis and, for example, to enables

exact matching of calls and returns. For this reason, we have defined the (abstract) allocation

functions alloc and palloc to allocate value addresses and continuation addresses respectively

(see Section 3.1.2).

7.4. Algorithmic Optimisations

In this section, we present some recent contributions presenting techniques to speed up the static

analysis of programs by altering the design of the fixed-point computation. The incremental

algorithm presented in Section 4.3 of this dissertation also is such a technique: to speed up the

computation of the fixed-point, the intra-process analysis in Algorithm 3 is made incremental.

We now first introduce the related work, before discussing its relation with our own.

Wei et al. (2018) propose to optimise abstract interpreters by using multi-stage programming.

They propose staged abstract interpreters, abstract interpreters that are specialised for a given

program and show that such staged abstract interpreters can result in significantly reduced

analysis times. Wei et al. also find that applying this technique to an open program, that is,

a program containing unbound variables, results in a sound modular analysis when the free

program variables are treated as dynamic inputs, resulting in a partial analysis result that can

later be reused and composed with other partial analysis results.

Algorithms to perform a static analysis often are work list based and require to maintain a set

of visited states to avoid duplication of work and to ensure termination. Nicolay et al. (2019)

state that the use of such a visited set incurs a significant overhead since set membership needs

to be tested for every state that is removed from the work list. To resolve this overhead Nicolay

et al. propose MODF, an abstract-interpreter based analysis that avoids the use of a visited set

and that is modular by design on the granularity of function calls. Each function execution is

analysed in isolation and until completion while the abstract interpreter generates the required

effects, that is, while tracking the function’s behaviour by identifying which variables are read

from and written to and which other functions are called. The analysis also caches the return

values of the function executions. Based on the generated effects, the analysis infers which

functions to analyse next, i.e., the analysis is driven by the effects it generates. For example,

when the return value of a function execution changes, function executions relying on that

value need reanalysis. Because function executions are analysed as a whole and in isolation,

MODF avoids the need for maintaining a set of visited states; every function execution that is in

the work list needs to be analysed. The analysis is applicable to programs featuring higher-order

functions and mutable state (Nicolay et al., 2019).

94

7.5. Semantics for Combined Concurrent Programming Constructs

Germane et al. (2019) present a 0CFA demand control-flow analysis. Regular, exhaustive, control-

flow analyses calculate information for every variable in a program. However, this may be

unnecessary as often only particular program variables are of interest. To alleviate this issue,

the presented demand control-flow analysis allows for selective computation of information,

that is, to only compute control-flow information for specific variables. The presented analysis

works by combining two modes of operation. On the one hand, the evaluation mode, which is

standardly used by regular (abstract) interpreters, establishes the value of an expression by

evaluating it (abstractly). On the other hand, tracing mode starts from a value (stored within a

variable) and looks for the set of expressions that evaluate to that value. As such, evaluation

and tracing mode can be considered as counterparts as they work in the opposite direction.

The interplay of these two modes allows to calculate the required information only for specific

program variables, instead of having to calculate this information for every variable in the

program. Germane et al. find that their demand 0CFA control-flow analysis is equally precise

to an exhaustive 0CFA control flow analysis while having a good performance.

The modular analysis presented by Wei et al. (2018) differs from the thread-modular analysis

used throughout this dissertation in that the analysis is modular with regard to static source

code components since modularity is obtained by considering unbound variables as dynamic

inputs. A thread-modular analysis, such as used throughout this dissertations, is modular in

the processes to be analysed and allows for complex features such as dynamic thread creation.

Hence, the division between modules is dynamic since, for example, the number of different

abstract threads may be unknown in advance. On the other hand, the division used by Wei et al.

is static and based on the program’s source code. The same remark can be made for the analysis

presented by Nicolay et al. (2019) as their module division is made based on functions, whereas

the one presented in this dissertation is thread-based. However, the algorithms presented in this

dissertation also make use of a visited set. The MODF technique seems not directly transferable

to thread-based modularity however: since MODF is used to analyse sequential programs, it

does not have to take into account thread interleavings. As a result, the technique may need

serious modifications to be usable for the analysis of concurrent programs. The same remark

may be true for the analysis developed by Germane et al. (2019), whose demand control-flow

analysis can be used to compute information for specific variables. In multithreaded programs,

however, the values stored in variables may be affected by the different threads in the program.

For this reason, it seems that the technique of Germane et al. is not suited for the analysis of

concurrent programs.

7.5. Semantics for Combined Concurrent Programming Constructs

Static analyses for concurrent programs are often used to detect concurrency bugs, such as race

conditions. To prevent concurrency bugs, programming languages offer concurrency constructs

such as atoms, futures and software-transactional memory (STM), which provide guarantees

on program behaviour by providing functions to handle access to shared resources and impos-

ing restrictions on the use of these resources, for example. The guarantees provided by such

concurrency constructs are expressed by their semantics. For example, the formal semantics of

λα expresses the guarantees made by atoms. Based on this semantics, we have built an abstract

interpreter for λα. Hence, knowing how concurrency constructs behave not only allows using

them while programming but also makes program analysis of concurrent languages possible.

Swalens et al. (2014) find that although multiple concurrency constructs are often combined,

such a combination can lead to a violation of the guarantees made by the individual con-

structs. Using these findings, Swalens studies how different constructs can be combined and

95

7. Related work

presents Chocola, a language unifying actors, futures and transactions. New in this language

is that Chocola also provides guarantees on the behaviour of these constructs when used in

combination: apart from the definition of the semantics of every concurrency construct in sepa-

ration, Chocola also defines the semantics of their combinations, such as transactional actors and

transactional futures.

The explicit semantics for combinations of concurrency constructs defined in the work of

Swalens (2018) allows the construction of abstract interpreters that can handle these combi-

nations while knowing exactly how the combined constructs behave. This is of course of crucial

importance during the development of sound abstract interpreters for concurrent languages.

7.6. Conclusion

In this chapter, we have discussed work related to the work in this dissertation. Our work is sit-

uated on the intersection of multiple domains within the field of static analysis. Recent work on

concurrent modular analyses coincides with our work by supporting dynamic thread creation

and by using effects to formalise thread interference. Also, the related work on thread-modular

analyses that was discussed is closely related. The incrementalisation technique introduced

in this thesis differs from other work on incremental static analysis as our technique is not

incremental with regard to source code changes in the program under analysis. On the con-

trary, we incrementally compute the analysis result for a given version of the program. Hence,

the challenges discussed in this dissertation are not directly linkable to other work concerning

incremental static program analysis. We concluded the chapter by presenting related work in-

troducing improved abstractions and algorithms but found that the work on the latter category

may not immediately be applicable to the analysis of concurrent programs.

96

8
CO NC LU S I O N

In this dissertation, we have presented two main contributions. Our first contribution is the

application of a thread-modular analysis to a concurrent higher-order language with futures,

atoms and dynamic thread creation. To this end, we have built an abstract interpreter using the

AAM technique of Van Horn & Might and formalised this interpreter by means of an abstract

PCESK machine. Thereafter, we modified the algorithm of Stiévenart to make our abstract

interpreter thread-modular according to the principles laid out by Cousot & Cousot. This way,

ModAtom is obtained.

ModAtom discards all results for a given abstract thread upon reanalysis of the thread, that is,

the algorithm starts the reanalysis of every abstract thread from scratch. We find that this may

not be an optimal solution since only part of the analysis results for that abstract thread may

need to be recomputed, i.e., the ModAtom algorithm may needlessly duplicate work, resulting

in increased analysis times. To avoid this unnecessary duplication of work, we propose to

incrementally compute the analysis results of the different abstract threads in a program, thereby

only recomputing the parts of the analysis results that are required to be updated and reusing

parts of the analysis results that do not need to be updated. To incrementalise ModAtom, we

have developed a more fine-grained tracking mechanism for effects, allowing the intra-process

analysis phase to be restarted from a specific abstract state. This results in IncAtom, a new

incremental thread-modular analysis algorithm. In addition, we have presented intra-process

analysis abortion and visited set caching as possible optimisations to further decrease the

analysis time, respectively of IncAtom and of ModAtom and IncAtom. We have proven that

both ModAtom and IncAtom are guaranteed to terminate, which is a critical requirement for a

static analyser.

In our evaluation, we have experimentally shown that IncAtom is sound by comparing the

abstract store resulting from the analysis of a program to the one produced by ModAtom.

Furthermore, our experiments have shown that, on 21 out of 23 benchmarks, the use of our

incremental algorithm results in a significantly lower average analysis time, with reductions of

the average analysis time up to 63%. Also, there was a reduction of the number of states in the

resulting abstract state graph for 6 out of 23 benchmarks, meaning that our analysis is more

precise than ModAtom on these benchmarks as the resulting abstract state graph contains fewer

spurious paths. Using the ACRR, we are able to measure how much of a previously computed

result IncAtom reuses. We find that the value of the ACRR ranges up to 96% and is above 50%

for 13 out of 23 benchmark programs. However, there is no immediate correlation between the

ACRR and the analysis time. Lastly, we found that the incorporation of visited set caching into

97

8. Conclusion

IncAtom does not reduce the analysis time on any benchmark. On the contrary, we find the

visited set reuse ratio to be zero for all benchmarks and note a significant increase in analysis

time of up to a factor 94.

8.1. Future Work

In this final section of this dissertation, we present four possible directions for future research.

A first improvement to our current research is to further incrementalise IncAtom with regard

to changes in the source code of the program under analysis, as discussed in Section 8.1.1. A

second improvement, discussed in Section 8.1.2, concerns the filtering pass that needs to be

applied after the analysis of a program. Third, we find that it may be possible to introduce effect

summaries into our work, as is discussed in Section 8.1.3. Finally, we think it is recommended to

perform a more extensive evaluation of our incremental algorithm, which we discuss in Section

8.1.4.

8.1.1. Handling Source Code Changes

In this dissertation, we have presented an algorithm to incrementally compute the analysis

results for a given program. Upon reanalysis of an abstract thread, our algorithm is able to reuse

as much as possible of previously computed results. However, our algorithm is not incremental

with regard to changes in the program under analysis. Upon a change in the program, no matter

how small, a new analysis must be started from scratch. Therefore, a further improvement to our

work would be to further incrementalise IncAtom with regard to changes to the source program

under analysis. As a result, both the intra-process analysis phase as well as the inter-process

analysis phases will be rendered incremental.

A change to the program under analysis may also cause previously generated effects to become

invalid. For example, a programmer may remove a line of code wherein a future is dereferenced.

When these effects are preserved, they may cause a loss in precision and imprecision may be

built-up upon several successive reanalyses after a program change. To remedy this, a change

impact analysis will have to be introduced that is able to infer which effects have become invalid.

These effects can then be removed to avoid building-up of imprecision.

8.1.2. State Filtering

At the end of every analysis, both ModAtom and IncAtom require a filtering pass to remove

states that are not reachable from the initial state of any abstract thread. It is clear that such

filtering operation introduces an overhead to the analysis. In future work, we can explore

techniques to avoid this filtering pass. A possible technique could be to immediately remove all

states that become disconnected during the analysis. This will, however, require a mechanism

to track which states are still reachable. Also, it must be investigated whether this immediate

removal of states leads to an increased or decreased overhead.

98

8.2. Concluding Remarks

8.1.3. Introducing Effect Summaries

To compute thread interference, both ModAtom and IncAtom continuously track the effects

that are generated by the intra-process analysis of a thread. This is needed to ensure soundness

of the analysis, which must account for all possible thread interleavings. In Section 7.1.2, we

discussed effect summaries, developed by Holík et al. (2017) to compute thread interference in

linear time and we stated that this technique seems to be directly applicable to our own analysis.

Therefore, it would be interesting to see how effect summaries can be used in combination with

our incremental analysis algorithm. This way, we may be able to avoid the need to track effects

continuously, as is currently done by IncAtom.

8.1.4. Extended Evaluation

In Chapter 6, we have presented an evaluation of IncAtom. In this section, we discuss how this

evaluation may further be improved upon.

First, in Section 6.1, we have verified soundness of the analysis by comparing it to its non-

incremental counterpart, ModAtom. However, it may be more interesting to compare the results

of IncAtom immediately to the results of a concrete interpreter as this may produce more

detailed soundness results. During such a soundness analysis, it must, however, be taken into

account that the result of a concrete interpreter may be nondeterministic due to the parallelism

in λα programs.

Second, in Section 6.2, we have studied the behaviour of IncAtom according to several metrics.

However, the reason why some results were obtained remains unclear. For example, we were

unable to pinpoint the exact reason for the dramatic increase in analysis time when the visited

set caching optimisation was enabled. Further analysis steps may need to be taken to fully clarify

our results.

Finally, throughout our evaluation, we have configured Scala-AM to use thread identifiers

consisting of an expression and a timestamp, name addresses, no context sensitivity and the

type lattice. It may, however, be interesting to see how our incremental algorithm behaves when

using a different configuration of the framework. For example, it may be interesting to investigate

the effect of enabling context sensitivity or to study the impact of alternative definitions for âlloc,
k̂alloc and p̂alloc.

8.2. Concluding Remarks

In this dissertation, we have presented two additions to the state of the art in static analysis of

concurrent languages. Our first contribution is the extension of the application domain of AAM-

based analyses to concurrent languages with atoms. Thereafter, we have presented IncAtom, an

incremental thread-modular algorithm. IncAtom incrementally computes the analysis results

for the different abstract threads and results in lower analysis times and smaller abstract state

graphs, indicating that the analysis has a better scalability and a higher precision. This allows

IncAtom to analyse more substantial programs while producing more accurate results.

99

A
A D D I T I O NA L T R A N S I T I O N RU L E S FO R λφ

In this appendix, we present the concrete and abstract transition rules for the predicates and

cancellation functions of λφ that have been omitted in Chapter 3. The concrete transition rules

for these functions are depicted in Figure A.1 and the corresponding abstract transition rules

are shown in Figure A.2. Again, each rule of the transition relation is annotated with the thread

identifier p of the thread performing the transition (p):

• Rules future-cancel-t, future-cancel-f1 and future-cancel-f2 specify how future cancel-

lation works. A future can only be cancelled when it has not been cancelled before and

when it has not reached the end of its computation already. In this case, the thread map

is updated and the future’s state is replaced by cancelled. The premises checking these

conditions are indicated in red.

• Rules isfuture-t, isfuture-f, future-done-t, future-done-f, future-cancelled-t and future-

cancelled-f describe evaluation rules for the predicates future?, future-done? and

future-cancelled? respectively. Two rules are needed for every predicate, since each

of them may evaluate to true or false. The differences within every pair of corresponding

rules are indicated in red.

101

A. Additional Transition Rules for λφ

λφ

π(p) = 〈ev((future? ae), ρ), k〉 ρ, σ ` ae ⇓ fut(p′)
π, σ, Ξ p π[p 7→ 〈val(#t), k〉], σ, Ξ

isfuture-t

π(p) = 〈ev((future? ae), ρ), k〉 ρ, σ ` ae ⇓ v v 6= fut(p′)
π, σ, Ξ p π[p 7→ 〈val(#f), k〉], σ, Ξ

isfuture-f

π(p) = 〈ev((future-done? ae), ρ), k〉
ρ, σ ` ae ⇓ fut(p′) π(p′) = 〈val(v), k0〉

π, σ, Ξ p π[p 7→ 〈val(#t), k〉], σ, Ξ
future-done-t

π(p) = 〈ev((future-done? ae), ρ), k〉
ρ, σ ` ae ⇓ fut(p′) π(p′) 6= 〈val(v), k0〉

π, σ, Ξ p π[p 7→ 〈val(#f), k〉], σ, Ξ
future-done-f

π(p) = 〈ev((future-cancel ae), ρ), k〉 ρ, σ ` ae ⇓ fut(p′)
π(p′) = ς ς 6= 〈val(v), k0〉 ς 6= cancelled

π, σ, Ξ p π[p 7→ 〈val(#t), k〉, p′ 7→ cancelled], σ, Ξ
future-cancel-t

π(p) = 〈ev((future-cancel ae), ρ), k〉
ρ, σ ` ae ⇓ fut(p′) π(p′) = 〈val(v), k0〉

π, σ, Ξ p π[p 7→ 〈val(#f), k〉], σ, Ξ
future-cancel-f1

π(p) = 〈ev((future-cancel ae), ρ), k〉
ρ, σ ` ae ⇓ fut(p′) π(p′) = cancelled

π, σ, Ξ p π[p 7→ 〈val(#f), k〉], σ, Ξ
future-cancel-f2

π(p) = 〈ev((future-cancelled? ae), ρ), k〉
ρ, σ ` ae ⇓ fut(p′) π(p′) = cancelled

π, σ, Ξ p π[p 7→ 〈val(#t), k〉], σ, Ξ
future-cancelled-t

π(p) = 〈ev((future-cancelled? ae), ρ), k〉
ρ, σ ` ae ⇓ fut(p′) π(p′) 6= cancelled

π, σ, Ξ p π[p 7→ 〈val(#f), k〉], σ, Ξ
future-cancelled-f

Figure A.1.: Concurrent transition rules for λφ (continued).

102

λφ

〈ev((future? ae), ρ̂), k̂〉 ∈ π̂(p̂) ρ̂, σ̂ ` ae ⇓̂ fut(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#t), k̂〉], σ̂, Ξ̂
isfuture-t

〈ev((future? ae), ρ̂), k̂〉 ∈ π̂(p̂) ρ̂, σ̂ ` ae ⇓̂ v̂ v̂ 6= fut(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#f), k̂〉], σ̂, Ξ̂
isfuture-f

〈ev((future-done? ae), ρ̂), k̂〉 ∈ π̂(p̂)
ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) 〈val(v̂), k̂0〉 ∈ π̂(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#t), k̂〉], σ̂, Ξ̂
future-done-t

〈ev((future-done? ae), ρ̂), k̂〉 ∈ π̂(p̂)
ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) ς̂ ∈ π̂(p̂′) ς̂ 6= 〈val(v̂), k̂0〉

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#f), k̂〉], σ̂, Ξ̂
future-done-f

〈ev((future-cancel ae), ρ̂), k̂〉 ∈ π̂(p̂)
ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) ς̂ ∈ π̂(p̂′) ς̂ 6= 〈val(v̂), k̂0〉ς̂ 6= cancelled

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#t), k̂〉, p̂′ 7→ cancelled], σ̂, Ξ̂
future-cancel-t

〈ev((future-cancel ae), ρ̂), k̂〉 ∈ π̂(p̂)
ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) 〈val(v̂), k̂0〉 ∈ π̂(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#f), k̂〉], σ̂, Ξ̂
future-cancel-f1

〈ev((future-cancel ae), ρ̂), k̂〉 ∈ π̂(p̂)
ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) cancelled ∈ π̂(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#f), k̂〉], σ̂, Ξ̂
future-cancel-f2

〈ev((future-cancelled? ae), ρ̂), k̂〉 ∈ π̂(p̂)
ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) cancelled ∈ π̂(p̂′)

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#t), k̂〉], σ̂, Ξ̂
future-cancelled-t

〈ev((future-cancelled? ae), ρ̂), k̂〉 ∈ π̂(p̂)
ρ̂, σ̂ ` ae ⇓̂ fut(p̂′) ς̂ ∈ π̂(p̂′) ς̂ 6= cancelled

π̂, σ̂, Ξ̂ ̂ p̂ π̂ t [p̂ 7→ 〈val(#f), k̂〉], σ̂, Ξ̂
future-cancelled-f

Figure A.2.: Abstract concurrent transition rules for λφ (continued).

103

B
P RO O F S

In this appendix, we present the full proofs of the lemmas and theorems presented throughout

this dissertation.

B.1. Termination of the Non-Incremental Modular Analysis

Algorithm

In this section, we show that our formulation of the non-incremental modular analysis (Algo-

rithm 1), which relies on two alternating phases, terminates.

Lemma 1. Consider an abstract value store σ̂. After a finite number of updates of σ̂, a fixed-point is

reached.

Proof. We prove Lemma 1 by proving the statement for a single abstract address â in σ̂. If the

statement holds for a single abstract address â, it is clear that it also holds for the entire abstract

store σ̂.

By definition, an abstract value store σ̂ maps abstract addresses to sets of abstract values (see

Section 3.1.4). The sets of abstract values form a set lattice of which the join operator t is defined

as set union ∪.

Whenever an address â in the store is updated, according to the abstract semantics of λα, the

set of abstract values residing at that address in the store is joined together with a singleton

set containing the new abstract value. As a result, the set of values related to â may grow, or,

if the value was already included, remains the same size. By construction, the set of abstract

values is finite. Assume n = |V̂al|, then only n updates to the abstract address â can result in a

modification of σ̂.

Lemma 2. Consider an abstract continuation store Ξ̂. After a finite number of updates of Ξ̂, a fixed-point

is reached.

Proof. Similar to the proof of Lemma 1 and based on the given that, by construction, the set of

abstract continuation frames is finite.

105

B. Proofs

Lemma 3. The intra-process analysis of an abstract thread in Algorithm 1 terminates.

Proof. The intra-process analysis of an abstract thread p̂ starts from the abstract initial states

related to p̂ by π̂. The transition function iteratively generates abstract successor states, starting

from the given abstract initial states. By construction, the number of abstract states is finite

and the visited set prevents states from being stepped multiple times. Therefore, only a finite

number of states can be generated by the transition function.

Upon a change in the (continuation) store, the visited set is emptied and previously stepped

states may be stepped again by the transition function. By Lemmas 1 and 2, the visited set can

only be emptied a finite number of times.

Since the number of abstract states is finite and the visited set can only be emptied a finite

number of times, the analysis must reach a point in which the visited set contains all generated

states. At this point, the intra-process analysis reaches a fixed-point and terminates.

Theorem 1. The process-modular analysis of a program e in Algorithm 1 terminates.

Proof. To prove that the analysis of the program e terminates, it suffices to prove that the

inter-process analysis of Algorithm 1 terminates.

The inter-process analysis starts with the thread identifier of the main thread in its work list.

To show the inter-process analysis terminates, we have to prove that the intra-process analysis

need only be called a finite number of times.

The intra-process analysis of a thread is called when it is a newly created thread, the thread

reads a modified return value of another thread or there is a read-write or write-write conflict

with another thread.

Since, by construction, the number of abstract thread identifiers and the number of states are

finite, the number of abstract threads that can be created is finite. By design, the return value

of such an abstract thread is part of a lattice and can only be updated a finite number of times.

Also, the number of reanalyses caused by read-write and write-write conflicts is finite, since the

addresses in the value store may only be updated a finite number of times (Lemma 1). Hence,

the number of times the intra-process analysis is executed is finite. Lemma 3 gives us that

each intra-process analysis terminates. As a result, the inter-process analysis must terminate as

well.

106

B I B L I O G R A P H Y

Agha, G., Mason, I., Smith, S., & L. Talcott, C. (1997). A Foundation for Actor Computation.

Journal of Functional Programming, 7(1), 1–72. doi: 10.1017/S095679689700261X

Chadwick, J. E. (2013). How a Smarter Grid Could Have Prevented the 2003 U.S. Cascading

Blackout. In 2013 IEEE Power and Energy Conference at Illinois, PECI 2013, Champaign, IL, USA,

February 22-23, 2013 (pp. 65–71). New York, NY, USA: IEEE. doi: 10.1109/PECI.2013.6506036

Cousot, P., & Cousot, R. (1977). Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In R. M. Graham,

M. A. Harrison, & R. Sethi (Eds.), Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages, POPL 1977, Los Angeles, CA, USA, January 17-19, 1977

(pp. 238–252). New York, NY, USA: ACM. doi: 10.1145/512950.512973

Cousot, P., & Cousot, R. (2002). Modular Static Program Analysis. In R. N. Horspool (Ed.),

Proceedings of the 11th International Conference on Compiler Construction, CC 2002, Grenoble,

France, April 8-12, 2002 (pp. 159–178). Berlin, Heidelberg, Germany: Springer. doi: 10.1007/

3-540-45937-5_13

Cousot, P., & Cousot, R. (2014). Abstract Interpretation: Past, Present and Future. In T. A. Hen-

zinger & D. Miller (Eds.), Proceedings of the Joint Meeting of the 23th EACSL Annual Conference

on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic

in Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, July 14-18, 2014 (pp. 1–10). New

York, NY, USA: ACM Press. doi: 10.1145/2603088.2603165

D’Osualdo, E., Kochems, J., & Ong, C.-H. L. (2013). Automatic Verification of Erlang-Style

Concurrency. In F. Logozzo & M. Fähndrich (Eds.), Proceedings of the 20th International Sym-

posium on Static Analysis, SAS 2013, Seattle, WA, USA, June 20-22, 2013 (pp. 454–476). Berlin,

Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-38856-9_24

Etiemble, D. (2018). 45-year CPU evolution: One law and two equations. Computing Research

Repository, abs/1803.00254. Retrieved from http://arxiv.org/abs/1803.00254

Felleisen, M., & Friedman, D. P. (1987). A Calculus for Assignments in Higher-Order Languages.

In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL 1987, Munich, West Germany, January 21-23, 1987 (pp. 314–325). New York,

NY, USA: ACM. doi: 10.1145/41625.41654

Flanagan, C., Freund, S. N., & Qadeer, S. (2002). Thread-Modular Verification for Shared-

Memory Programs. In D. L. Métayer (Ed.), Proceedings of the 11th European Symposium on Pro-

gramming Programming Languages and Systems, Grenoble, France, April 8-12, 2002 (pp. 262–277).

Berlin, Heidelberg, Germany: Springer. doi: 10.1007/3-540-45927-8_19

107

http://arxiv.org/abs/1803.00254

Bibliography

Flanagan, C., Sabry, A., Duba, B. F., & Felleisen, M. (1993). The Essence of Compiling with

Continuations. In R. Cartwright (Ed.), Proceedings of the 14th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 1993, Albuquerque, NM, USA, June

23-25, 1993 (pp. 237–247). New York, NY, USA: ACM. doi: 10.1145/155090.155113

Germane, K., McCarthy, J., Adams, M. D., & Might, M. (2019). Demand Control-Flow Analysis.

In C. Enea & R. Piskac (Eds.), Proceedings of the 20th International Conference on Verification,

Model Checking, and Abstract Interpretation, VMCAI 2019, Cascais, Portugal, January 13-15, 2019

(pp. 226–246). Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-030

-11245-5_11

Gilray, T., Adams, M. D., & Might, M. (2016). Allocation Characterizes Polyvariance: A Unified

Methodology for Polyvariant Control-Flow Analysis. In J. Garrigue, G. Keller, & E. Sumii

(Eds.), Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,

ICFP 2016, Nara, Japan, September 18-22, 2016 (pp. 407–420). New York, NY, USA: ACM. doi:

10.1145/2951913.2951936

Godefroid, P. (1995). Partial-Order Methods for the Verification of Concurrent Systems: An Approach

to the State-Explosion Problem (Doctoral dissertation). Université de Liège, Liège, Belgium.

Holík, L., Meyer, R., Vojnar, T., & Wolff, S. (2017). Effect Summaries for Thread-Modular

Analysis - Sound Analysis Despite an Unsound Heuristic. In F. Ranzato (Ed.), Proceedings of

the 24th International Symposium on Static Analysis, SAS 2017, New York, NY, USA, August 30 -

September 1, 2017 (pp. 169–191). Cham, Switzerland: Springer International Publishing. doi:

10.1007/978-3-319-66706-5_9

Johnson, J. I., & Van Horn, D. (2014). Abstracting Abstract Control. ACM SIGPLAN Notices,

50(2), 11–22. doi: 10.1145/2661088.2661098

Jones, C. B. (1981). Development Methods for Computer Programs including a Notion of Interference

(Doctoral dissertation). Oxford University, Oxford, England, UK. (Printed as: Programming

Research Group, Technical Monograph 25)

Liu, B., Huang, J., & Rauchwerger, L. (2019). Rethinking Incremental and Parallel Pointer

Analysis. ACM Transactions on Programming Languages and Systems, 41(1), 6:1–6:31.

Martel, M., & Gengler, M. (2000). Communication Topology Analysis for Concurrent Programs.

In K. Havelund, J. Penix, & W. Visser (Eds.), Proceedings of the 7th International SPIN Workshop

on Model Checking and Software Verification, Stanford, CA, USA, August 30 - September 1, 2000

(pp. 265–286). Berlin, Heidelberg, Germany: Springer. doi: 10.1007/10722468

Might, M., & Shivers, O. (2006). Improving Flow Analyses via ΓCFA: Abstract Garbage Collec-

tion and Counting. In J. H. Reppy & J. L. Lawall (Eds.), Proceedings of the 11th ACM SIGPLAN

International Conference on Functional Programming, ICFP 2006, Portland, OR, USA, September

16-21, 2006 (pp. 13–25). New York, NY, USA: ACM. doi: 10.1145/1159803.1159807

Might, M., & Van Horn, D. (2011). A family of abstract interpretations for static analysis of

concurrent higher-order programs. In E. Yahav (Ed.), Proceedings of the 18th international

static analysis symposium, SAS 2011, Venice, Italy, September 14-16, 2011 (pp. 180–197). Berlin,

Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-23702-7_16

Miné, A. (2014). Relational Thread-Modular Static Value Analysis by Abstract Interpretation. In

K. L. McMillan & X. Rival (Eds.), Proceedings of the 15th International Conference on Verification,

Model Checking, and Abstract Interpretation, VMCAI 2014, San Diego, CA, USA, January 19-21,

108

2014 (pp. 39–58). Berlin, Heidelberg, Germany: Springer. doi: 10.1007/978-3-642-54013-4_3

Nichols, L., Emre, M., & Hardekopf, B. (2019). Fixpoint Reuse for Incremental JavaScript Analysis.

Retrieved 2019-05-09, from https://www.cs.ucsb.edu/research/tech-reports/2019-02
(Contidionally accepted for the 8th ACM SIGPLAN International Workshop on the State

Of the Art in Program Analysis, SOAP 2019, Phoenix, AZ, USA, June 22-26, 2019.)

Nicolay, J., Stiévenart, Q., De Meuter, W., & De Roover, C. (2019). Effect-Driven Flow Analysis.

In C. Enea & R. Piskac (Eds.), Proceedings of the 20th International Conference on Verification,

Model Checking, and Abstract Interpretation, VMCAI 2019, Cascais, Portugal, January 13-15, 2019

(pp. 247–274). Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-030

-11245-5_12

Poulsen, K. (2004). Tracking the Blackout Bug. Retrieved 2019-05-27, from https://www
.securityfocus.com/news/8412

Rice, H. G. (1953). Classes of Recursively Enumerable Sets and Their Decision Problems.

Transactions of the American Mathematical Society, 74(2), 358–366. doi: 10.2307/1990888

Shivers, O. (1991). Control-Flow Analysis of Higher-Order Languages (Doctoral dissertation).

Carnegie Mellon University, Pittsburgh, PA, USA.

Stiévenart, Q., Nicolay, J., De Meuter, W., & De Roover, C. (2019). A General Method for

Rendering Static Analyses for Diverse Concurrency Models Modular. Journal of Systems and

Software, 147, 17–45. doi: 10.1016/j.jss.2018.10.001

Stiévenart, Q. (2014). Static Analysis of Concurrency Constructs in Higher-Order Programs (Master’s

thesis). Université libre de Bruxelles, Brussels, Belgium.

Stiévenart, Q. (2018). Scalable Designs for Abstract Interpretation of Concurrent Programs: Application

to Actors and Shared-Memory Multi-Threading (Doctoral dissertation). Vrĳe Universiteit Brussel,

Brussels, Belgium.

Stiévenart, Q., Nicolay, J., De Meuter, W., & De Roover, C. (2015). Detecting Concurrency

Bugs in Higher-Order Programs through Abstract Interpretation. In M. Falaschi & E. Albert

(Eds.), Proceedings of the 17th International Symposium on Principles and Practice of Declarative

Programming - PPDP 2015, Siena, Italy, June 14-16, 2015 (pp. 232–243). New York, NY, USA:

ACM Press. doi: 10.1145/2790449.2790530

Stiévenart, Q., Nicolay, J., De Meuter, W., & De Roover, C. (2016). Building a Modular Static

Analysis Framework in Scala (Tool Paper). In A. Biboudis, M. Jonnalagedda, S. Stucki, &

V. Ureche (Eds.), Proceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA@SPLASH

2016, Amsterdam, Netherlands, October 30 - November 4, 2016 (pp. 105–109). New York, NY, USA:

ACM Press. doi: 10.1145/2998392.3001579

Stiévenart, Q., Vandercammen, M., Meuter, W. D., & De Roover, C. (2016). Scala-AM: A

Modular Static Analysis Framework. In 16th IEEE International Working Conference on Source

Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA, October 2-3, 2016 (pp. 85–90).

Los Alamitos, CA, USA: IEEE Computer Society. doi: 10.1109/SCAM.2016.14

Swalens, J. (2018). A Multi-Paradigm Concurrent Programming Model (Doctoral dissertation). Vrĳe

Universiteit Brussel, Brussels, Belgium.

Swalens, J., Marr, S., De Koster, J., & Van Cutsem, T. (2014). Towards Composable Concurrency

109

https://www.cs.ucsb.edu/research/tech-reports/2019-02
https://www.securityfocus.com/news/8412
https://www.securityfocus.com/news/8412

Bibliography

Abstractions. In A. F. Donaldson & V. T. Vasconcelos (Eds.), Proceedings of the 7th Workshop on

Programming Language Approaches to Concurrency and Communication-cEntric Software, PLACES

2014, Grenoble, France, April 12, 2014 (pp. 54–60). doi: 10.4204/EPTCS.155.8

Szabó, T., Erdweg, S., & Voelter, M. (2016). IncA: A DSL for the Definition of Incremental

Program Analyses. In D. Lo, S. Apel, & S. Khurshid (Eds.), Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, ASE 2016 (pp. 320–331). New York,

NY, USA: ACM. doi: 10.1145/2970276.2970298

Tripp, O., Pistoia, M., Cousot, P., Cousot, R., & Guarnieri, S. (2013). Andromeda: Accurate and

Scalable Security Analysis of Web Applications. In V. Cortellessa & D. Varró (Eds.), Proceedings

of the 16th International Conference on Fundamental Approaches to Software Engineering, FASE

2013, Rome, Italy, March 16-24, 2013 (pp. 210–225). Berlin, Heidelberg, Germany: Springer. doi:

10.1007/978-3-642-37057-1_15

Van Es, N. (2017). Incrementalizing Abstract Interpretation (Master’s thesis). Vrĳe Universiteit

Brussel, Brussels, Belgium.

Van Es, N., Vandercammen, M., & De Roover, C. (2017). Incrementalizing Abstract Interpretation.

In S. Demeyer, A. Parsai, G. Laghari, & B. van Bladel (Eds.), Proceedings of the 16th edition

of the BElgian-NEtherlands software eVOLution symposium, BENEVOL 2017, Antwerp, Belgium,

December 4-5, 2017 (pp. 31–35). Aachen, Germany: CEUR Workshop Proceedings.

Van Horn, D., & Might, M. (2010). Abstracting Abstract Machines. In P. Hudak & S. Weirich

(Eds.), Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming,

ICFP 2010, Baltimore, MD, USA, September 27-29, 2010 (pp. 51–62). New York, NY, USA: ACM.

doi: 10.1145/1863543.1863553

Van Horn, D., & Might, M. (2012). Systematic Abstraction of Abstract Machines. Journal of

Functional Programming, 22(4-5), 705–746. doi: 10.1017/S0956796812000238

Wei, G., Chen, Y., & Rompf, T. (2018). Staged Abstract Interpreters - Fast and Modular Whole-Program

Analysis via Meta-Programming. Retrieved 2018-12-17, from https://www.cs.purdue.edu/
homes/rompf/papers/wei-preprint201811.pdf (Preprint November 2018.)

110

https://www.cs.purdue.edu/homes/rompf/papers/wei-preprint201811.pdf
https://www.cs.purdue.edu/homes/rompf/papers/wei-preprint201811.pdf

	Introduction
	Motivation and Research Context
	Objectives and Contributions
	Overview of the Dissertation

	Introduction to Static Analysis
	Fundamentals of Static Analysis
	Concrete and Abstract Interpretation
	Concrete Interpretation
	Abstract Interpretation
	Mathematical Preliminaries
	Formalising Abstractions

	Static Analysis for Concurrent Languages
	Non-Modular Static Analysis for Concurrent Languages
	Thread-Modular Static Analysis for Concurrent Languages

	Conclusion

	Towards an Abstract Interpreter for , a Concurrent Language with Atoms
	0, a Sequential Base Language
	Syntax
	Concrete Semantics
	Intermezzo: Administrative Normal Form (ANF)
	Abstract Semantics

	, a Simple Concurrent Language
	Syntax
	Concrete Semantics
	Abstract Semantics

	, a Concurrent Language with Atoms
	Syntax
	Concrete Semantics
	Abstract Semantics

	Conclusion

	An Incremental Thread-Modular Analysis for
	, a Formalisation of Thread Interference for
	Effects
	Abstract Atomic Evaluation Relation
	Abstract Sequential Transition Relation
	Abstract Concurrent Transition Relation

	A Non-Incremental Thread-Modular Analysis Algorithm for
	State Injection
	Inter-Process Analysis Phase
	Intra-Process Analysis Phase
	Termination

	Incrementalising the Thread-Modular Analysis Algorithm for
	General Approach
	Inter-Process Analysis Phase
	Intra-Process Analysis Phase
	Termination
	Soundness

	Optimisations
	Visited Set Caching
	Intra-Process Analysis Abortion

	General Considerations
	Filtering the Abstract State Graph
	Thread-Local Continuation Stores

	Example: Analysis of a Simple Concurrent Program
	Conclusion

	Implementation
	Background on Scala-AM
	Implementation of the Semantics of
	Implementation of Futures and a Non-Modular Concurrent Analysis
	Implementation of Atoms

	Implementation of the Modular Analyses for
	Addition of Effects
	Implementation of the Thread-Modular Analyses

	Schematic Overview of the Implementation
	Conclusion

	Evaluation
	Soundness Testing
	Methodology and Experimental Setup
	Benchmark Programs
	Results

	Metrics for IncAtom
	Methodology and Experimental Setup
	Results

	Conclusion

	Related work
	Analysis of Concurrent Programs
	Non-Modular Analysis of Concurrent Programs
	Modular Analysis of Concurrent Programs

	Incremental Static Analysis
	Improved Abstractions
	Algorithmic Optimisations
	Semantics for Combined Concurrent Programming Constructs
	Conclusion

	Conclusion
	Future Work
	Handling Source Code Changes
	State Filtering
	Introducing Effect Summaries
	Extended Evaluation

	Concluding Remarks

	Additional Transition Rules for
	Proofs
	Termination of the Non-Incremental Modular Analysis Algorithm

	Bibliography

